Answer:
0.25 N
Explanation:
The density of the ball (
) = 0.0839 g/cm³ = 83.9 kg/m³
The density of water (
) = 1000 kg/m³
diameter = 3.77 cm = 0.0377 m
radius of ball = 0.0377/2 = 0.01885 m
The volume (V) = 
Let us assume the acceleration due to gravity (g) = 9.8 m/s²
Hence:
The force is required to hold it completely submerged under water (F) is:

F = 0.25 N
Answer:
(a) whether slipping occurs between the belt and the cylinder i think is the answer dont hate if you get it wrong please and thank you.
Explanation:
i am just guessing otay.
Answer:
θ = 6.3 *10³ revolutions
Explanation:
Angular acceleration of the drill
We apply the equations of circular motion uniformly accelerated
ωf= ω₀ + α*t Formula (1)
Where:
α : Angular acceleration (rad/s²)
ω₀ : Initial angular speed ( rad/s)
ωf : Final angular speed ( rad
t : time interval (s)
Data
ω₀ = 0
ωf = 350000 rpm = 350000 rev/min
1 rev = 2π rad
1 min= 60 s
ωf = 350000 rev/min =350000*(2π rad/60 s)
ωf = 36651.9 rad/s
t = 2.2 s
We replace data in the formula (2) :
ωf= ω₀ + α*t
36651.9 = 0 + α* (2.2)
α = 36651.9 / (2.2)
α = 17000 rad/s²
Revolutions made by the drill
We apply the equations of circular motion uniformly accelerated
ωf²= ω₀ ²+ 2α*θ Formula (2)
Where:
θ : Angle that the body has rotated in a given time interval (rad)
We replace data in the formula (2):
(ωf)²= ω₀²+ 2α*θ
(36651.9)²= (0)²+ 2( 17000 )*θ
θ = (36651.9)²/ (34000 )
θ = 39510.64 rad = 39510.64 rad* (1 rev/2πrad)
θ = 6288.31 revolutions
θ = 6.3 *10³ revolutions
Answer:
Yes, the errors are likely to be relevant
Explanation:
A systematic error occurs as a result of the instrument used in carrying out and experiment. These errors are a result of small fluctuations in the measurement properties of the instrument. This happens when the instrument departs from non-ideal situations, for example as a result of physical expansion or change in temperature. For instance, let the resistance be measured to be up to 10 Ω ± 1 Ω
The error of the resistance, ε = 0.01Ω