Answer:
0.0239364 N
0.0057879 N
Explanation:
= Density of the gas
g = Acceleration due to gravity = 9.81 m/s²
V = Volume
Mass of rubber = 1.5 g
Buoyant force is given by

The buoyant force is 0.0239364 N
Net vertical force is given by

The net vertical force is 0.0057879 N
We will use the ideal gas equation:
PV = nRT, where n is moles and equal to mass / Mr
P = mRT/MrV
P = 15.4 x 8.314 x (22.55 + 273) / 32 x 4.44
P = 266.3 kPa
Complete question:
if two point charges are separated by 1.5 cm and have charge values of +2.0 and -4.0 μC, respectively, what is the value of the mutual force between them.
Answer:
The mutual force between the two point charges is 319.64 N
Explanation:
Given;
distance between the two point charges, r = 1.5 cm = 1.5 x 10⁻² m
value of the charges, q₁ and q₂ = 2 μC and - μ4 C
Apply Coulomb's law;

where;
F is the force of attraction between the two charges
|q₁| and |q₂| are the magnitude of the two charges
r is the distance between the two charges
k is Coulomb's constant = 8.99 x 10⁹ Nm²/C²

Therefore, the mutual force between the two point charges is 319.64 N
Force and Gravity, is what i think it is.
A) Work energy relation;
Work =ΔKE ; work done = Force × distance, while, Kinetic energy = 1/2 MV²
F.s = 1/2mv²
F× 4×10^-2 = 1/2 × 5 ×10^-3 × (600)²
F = 900/0.04
= 22500 N
Therefore, force is 22500 N
b) From newton's second law of motion;
F = Ma
Thus; a = F/m
= 22500/(5×10^-3)
= 4,500,000 m/s²
But v = u-at
0 = 600- 4500,000 t
t = 1.33 × 10^-4 seconds