This is just testing your ability to recall that kinetic energy is given by:
<span>k.e. = ½mv² </span>
<span>where m is the mass and v is the velocity of the particle. </span>
<span>The frequency of the light is redundant information. </span>
<span>Here, you are given m = 9.1 * 10^-31 kg and v = 7.00 * 10^5 m/s. </span>
<span>Just plug in the values: </span>
<span>k.e. = ½ * 9.1 * 10^-31 * (7.00 * 10^5)² </span>
<span>k.e. = 2.23 * 10^-19 J
so it will be d:2.2*10^-19 J</span>
Answer:
the mass of the air in the classroom = 2322 kg
Explanation:
given:
A classroom is about 3 meters high, 20 meters wide and 30 meters long.
If the density of air is 1.29 kg/m3
find:
what is the mass of the air in the classroom?
density = mass / volume
where mass (m) = 1.29 kg/m³
volume = 3m x 20m x 30m = 1800 m³
plugin values into the formula
1.29 kg/m³ = <u> mass </u>
1800 m³
mass = 1.29 kg/m³ ( 1800 m³ )
mass = 2322 kg
therefore,
the mass of the air in the classroom = 2322 kg
Answer: im not sire
Explanation: very sorry im not sure
Answer:
the field at the center of solenoid 2 is 12 times the field at the center of solenoid 1.
Explanation:
Recall that the field inside a solenoid of length L, N turns, and a circulating current I, is given by the formula:
Then, if we assign the subindex "1" to the quantities that define the magnetic field (
) inside solenoid 1, we have:

notice that there is no dependence on the diameter of the solenoid for this formula.
Now, if we write a similar formula for solenoid 2, given that it has :
1) half the length of solenoid 1 . Then 
2) twice as many turns as solenoid 1. Then 
3) three times the current of solenoid 1. Then 
we obtain:
