Answer:
When insulating materials rub against each other, they may become electrically charged . Electrons , which are negatively charged, may be 'rubbed off' one material and on to the other. The material that gains electrons becomes negatively charged
Explanation:
thank me later
PbCl2 would not dissolve because it is insoluble based on the solubility rules for substances that will dissolve in water. This compound would instead form a solid precipitate at the bottom of the container.
Answer:
Explanation:
There are three types of interactions involved between the particles when solution are formed.
1 : Solute - solute interaction:
2 : Solute - solvent interaction:
3 : Solvent - solvent interaction:
1 : Solute - solute interaction:
It is the inter-molecular attraction between the solute particles.
2 : Solute - solvent interaction:
It involve the inter-molecular attraction between solvent and solute particles.
3 : Solvent - solvent interaction:
It involve the intermolecular attraction between solvent particles.
Solutions are formed if the intermolecular attraction between solute particles are similar to the attraction between solvent particles.
Exothermic process:
The process will exothermic when solute solvent bonds are formed with the release of energy and energy required to brake the solute-solute particles and solvent solvent particles are less.
Endothermic process:
The process will be endothermic when energy required to break the solute-solute particles and solvent solvent particles are higher than energy released when solute solvent bonds are formed .
Answer:
190 °C
Step-by-step explanation:
The pressure is constant, so this looks like a case where we can use <em>Charles’ Law</em>:
V₁/T₁ = V₂/T₂ Invert both sides of the equation.
T₁/V₁ = T₂/V₂ Multiply each side by V₂
T₂ = T₁ × V₂/V₁
=====
V₁ = 3.75 L; T₁ = (37 + 273.15) K = 310.15 K
V₂ = 5.6 L; T₂ = ?
=====
T₂ = 310.15 × 5.6/3.75
T₂ = 310.15 × 1.49
T₂ = 463 K
t₂ = 463 – 273.15
t₂ = 190 °C