Answer:
All living things use cellular respiration to turn organic molecules into energy. ... This process makes energy from food molecules available for the organism to carry out life processes. Cellular respiration usually occurs in the presence of oxygen. This is called aerobic respiration.
I believe the correct answer is the first option. To increase the molar concentration of the product N2O4, you should increase the pressure of the system. You cannot determine the effect of changing the temperature since we cannot tell whether it is an endothermic or an exothermic reaction. Also, decreasing the number of NO2 would not increase the product rather it would shift the equilibrium to the left forming more reactants. The only parameter we can change would be the pressure. And, since NO2 takes up more space than the product increasing the pressure would allow the reactant to collide more forming the product.
1) d
2) b because the independent variable is the thing you change/control in an experiment
3) c because the dependent variable is the thing being measured in an experiment
4)hmm it might be d, as c and a are both correct as different sized feeders would make it an unfair test and different types of food would as well
5) c
6) a
7) b obviously because if he activated them at different times then the ones activated last would have an advantage
A. Chloroplasts
B. The cell wall and the vacuole
C. Vacuoles
D. The mitochondrion
Answer:
(a) boiling point
(d) density at a given temperature and pressure.
Explanation:
Isomers are compounds that have the same molecular formula but different structural formulas. They differ in chemical and physical properties depending on the type of isomerism displayed by the compounds.
The compounds stated here are structural or constitutional isomers hence they possess different boiling points and densities at a given temperature and pressure owing to structural differences in the molecules.
Since they have the same molecular formula, they must yield the same result during combustion analysis and they must have the same molecular weight.