Answer is: at higher temperatures reaction will go to the right (forward), more products (C₂H₄ and H₂) will be produce, because this is endothermic reaction (ΔH<span> is positive, </span>energy is consumed) and according Le Chatelier's principle <span>heat is included as a reactant. </span> .
Answer:
a) Pabs = 48960 KPa
b) T = 433.332 °C
Explanation:
∴ d = 1000 Kg/m³
∴ g = 9.8 m/s²
∴ h = 5000 m
∴ P gauge = - 40 KPa * ( 1000 Pa / KPa ) = - 40000 Pa; Pa≡Kg/m*s²
⇒ Pabs = - 40000 Kg/ms² + ( 1000 Kg/m³ * 9.8 m/s² * 5000 m )
⇒ Pabs = 48960000 Pa = 48960 KPa
a) at that height and pressure, we find the temperature at which the water boils by means of an almost-exponential graph which has the following equation:
P(T) = 0.61094 exp ( 17.625*T / ( T + 243.04 ))......P (KPa) ∧ T (°C)....from literature
∴ P = 48960 KPa
⇒ ( 48960 KPa / 0.61094 ) = exp ( 17.625T / (T+ 243.04))
⇒ 80138.803 = exp ( 17.625T / ( T + 243.04))
⇒ Ln ( 80138.803) = 17.625T / ( T + 243.04))
⇒ 11.292 * ( T + 243.04 ) = 17.625T
⇒ 11.292T + 2744.289 = 17.625T
⇒ 2744.289 = 17.625T - 11.292T
⇒ 2744.289 = 6.333T
⇒ T = 433.332 °C
<span>the one that is not a factor that contribute to natural selection is : Population stability
population refer to the capability of a community to maintain its total amount of organisms within a specific period of time.
This has nothing to do with natural selection, which basically a nature's way to reduce the number of organism to findout which organisms are more adaptive</span>
Answer:
1.Metals
These are very hard except sodium
These are malleable and ductile pieces
These are shiny
Electropositive in nature
Non-metals
These are soft except diamond
These are brittle and can break down into pieces
These are non-lustrous except iodine
Electronegative in nature
2. The electrochemical series helps to pick out substances that are good oxidizing agents and those which are good reducing agents.In an electrochemical series the species which are placed above hydrogen are more difficult to be reduced and their standard reduction potential values are negative.
3. Arrhenius theory, theory, introduced in 1887 by the Swedish scientist Svante Arrhenius, that acids are substances that dissociate in water to yield electrically charged atoms or molecules, called ions, one of which is a hydrogen ion (H+), and that bases ionize in water to yield hydroxide ions (OH−).
4. The common application of indicators is the detection of end points of titrations. The colour of an indicator alters when the acidity or the oxidizing strength of the solution, or the concentration of a certain chemical species, reaches a critical range of values.
The mass of ammonium chloride that must be added is : ( A ) 4.7 g
<u>Given data :</u>
Volume of water ( V ) = 250 mL = 0.25 L
pH of solution = 4.85
Kb = 1.8 * 10⁻⁵
Kw = 10⁻¹⁴
Given that the dissolution of NH₄Cl gives NH₄⁺⁺ and Cl⁻ ions the equation is written as :
NH₄CI + H₂O ⇄ NH₃ + H₃O⁺
where conc of H₃O⁺
[ H₃O⁺ ] =
and Ka = Kw / Kb
∴ Ka = 5.56 * 10⁻¹⁰
Next step : Determine the concentration of H₃O⁺ in the solution
pH = - log [ H₃O⁺ ] = 4.85
∴ [ H₃O⁺ ] in the solution = 1.14125 * 10⁻⁵
Next step : Determine the concentration of NH₄CI in the solution
C = [ H₃O⁺ ]² / Ka
= ( 1.14125 * 10⁻⁵ )² / 5.56 * 10⁻¹⁰
= 0.359 mol / L
Determine the number of moles of NH₄CI in the solution
n = C . V
= 0.359 mol / L * 0.25 L = 0.08979 mole
Final step : determine the mass of ammonium chloride that must be added to 250 mL
mass = n * molar mass
= 0.08979 * 53.5 g/mol
= 4.80 g ≈ 4.7 grams
Therefore we can conclude that the mass of ammonium chloride that must be added is 4.7 g
Learn more about ammonium chloride : brainly.com/question/13050932