The change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².
The given parameters;
- <em>Current flowing in the wire, I = 4.00 mA</em>
- <em>Initial diameter of the wire, d₁ = 4 mm = 0.004 m</em>
- <em>Final diameter of the wire, d₂ = 1 mm = 0.001 m</em>
- <em>Length of wire, L = 2.00 m</em>
- <em>Density of electron in the copper, n = 8.5 x 10²⁸ /m³</em>
<em />
The initial area of the copper wire;

The final area of the copper wire;

The initial drift velocity of the electrons is calculated as;

The final drift velocity of the electrons is calculated as;

The change in the mean drift velocity is calculated as;

The time of motion of electrons for the initial wire diameter is calculated as;

The time of motion of electrons for the final wire diameter is calculated as;

The average acceleration of the electrons is calculated as;

Thus, the change in mean drift velocity for electrons as they pass from one end of the wire to the other is 3.506 x 10⁻⁷ m/s and average acceleration of the electrons is 4.38 x 10⁻¹⁵ m/s².
Learn more here: brainly.com/question/22406248
The yo-yo speeds up when you rub it
Answer:
The speed after being pulled is 2.4123m/s
Explanation:
The work realize by the tension and the friction is equal to the change in the kinetic energy, so:
(1)
Where:

Because the work made by any force is equal to the multiplication of the force, the displacement and the cosine of the angle between them.
Additionally, the kinetic energy is equal to
, so if the initial velocity
is equal to zero, the initial kinetic energy
is equal to zero.
Then, replacing the values on the equation and solving for
, we get:


So, the speed after being pulled 3.2m is 2.4123 m/s
Finding acceleration= final velocity-initial velocity/ time taken (or A= V-U/T)
Final speed= 2m
Initial speed= 0m
Time taken= 2 seconds
2-0/2 so it’ll be 1m/s
2-0=0
2/2=