Explanation:
Momentum Is defined as the product of of mass and its velocity
Momentum (M) =mass *velocity
SI unit of momentum is kgm/s
The rate of change in momentum
=change in momentum / time
=(mv-mu)/t
Answer:
So, if a wave hits a mirror at an angle of 36°, it will be reflected at the same angle (36°). ... An incident ray of light hits a plane mirror at an angle and is reflected back off it. The angle of reflection is equal to the angle of incidence. Both angles are measured from the normal.
Explanation:
Answer:
accelerate in the direction in which the electric field is pointing.
Explanation:
The positive charge feels a force in the same direction as the electric field
F=Eq
F and E are vectors, q is a scalar
(if it were a negative charge the force would be in the opposite direction)
that force will produce an acceleration in the same direction, that acceleration will cause the particle to move in the same direction, ie the direction of the electric field.
Answer:
the best graph to find the acceleration is v-t since calculating the slope averages the different experimental errors.
Explanation:
The different graphics depending on time give various information, let's examine what we can get from some
Graph of x -t. from this graph we can obtain the speed through the slope, but the acceleration is not directly obtainable
v-t chart. We can get the acceleration not through the slope and the distance traveled by the area under the curve. Obtaining acceleration is very accurate since it is an average that avoids possible errors in measurements. This is the best graph to find the acceleration
Graph of a-t In this graph the acceleration is a point on the Y axis, it gives some errors because it depends strongly on the possible experimental errors.
In conclusion, the best graph to find the acceleration is v-t since calculating the slope averages the different experimental errors.
Answer:
For a gas held at constant temperature, we can apply Boyle's law, which states that the product between the gas pressure and its volume is constant:

where
P is the pressure
V is the volume
As we see from the equation, P and V are inversely proportional to each other: this means that when the volume is decreased, the pressure increases, and vice-versa. The reason for that is that when the volume is decreased, the gas is compressed, so the molecules of the gas come closer to each other, so they collide more frequently with the wall of the container, exerting therefore a greater pressure.