Answer:
yes
Explanation:
the force is multiplied by the levers length of the handle
Unlike a longitudinal wave, a transverse wave moves about, perpendicular to the direction of propagation. The particles in a transverse wave do not travel along the direction of propagation, but only oscillate up and down on its equilibrium position. With this, the displacement can be determined by measuring (in the case of electronic waves, using an oscilloscope or spectrum analyzer) and setting the desired units to measure the wave in.
Answer:
E
Explanation:
The police car is going to fast for the cop to hear and the same is with the speeder its who hears its highest pitch because it drives right past you and your not moving just standing on the cross walk
Answer with Explanation:
We are given that
Initial velocity,u=4.5 m/s
Time=t =0.5 s
Final velocity=v=0m/s
We have to find the deceleration and estimate the force exerted by wall on you.
We know that
Acceleration=
Using the formula
Acceleration=
deceleration=a=
We know that
Force =ma
Using the formula and suppose mass of my body=m=40 kg
The force exerted by wall on you
Force=
Answer:
Option B. 8.1
Explanation:
From the question given above, the following data were obtained:
Angle θ = 71°
Hypothenus = 25
Adjacent = x
Thus, we can obtain the x component of the vector by using the cosine ratio as illustrated below:
Cos θ = Adjacent /Hypothenus
Cos 71 = x/25
Cross multiply
x = 25 × Cos 71
x = 25 × 0.3256
x = 8.1
Therefore, the x component of the vector is 8.1