Answer:
Explanation:
Due to change in the position of 3 kg mass , the moment of inertia of the system changes , due to which angular speed changes . We shall apply conservation of angular momentum , because no external torque is acting .
Initial moment of inertia I₁ = M R² = 3 x 1 ² = 3 kg m²
Final moment of inertia I₂ = M R² = 3 x .3 ² = 0.27 kg m²
Applying law of conservation of angular momentum
I₁ ω₁ = I₂ ω₂
Putting the values ,
3 x .75 = .27 x ω₂
ω₂ = 8.33 rad / s
New angular speed = 8.33 rad /s .
Answer:
if i were you i would try to do the work because if you let someone else you wont be able to understand the question
I think it is c I'm only in 7th grade but I'm pretty sure that the answer is c
Answer:
40m
Explanation:
let's calculate the acceleration first
force = mass × acceleration
rearranging to find acceleration:
acceleration = force ÷ mass
force = 25N, mass = 5.0kg
acceleration = 25 ÷ 5 = 5ms^-2
we can now use the formula v^2 = u^2 + 2as where v = final velocity, u = initial velocity, a = acceleration and s = distance
rearranging v^2 = u^2 + 2as the distance is
s = (v^2 - u^2) ÷ 2a
v = 20, u = 0, a = 5
s = (20^2 - 0^2) ÷ (2 × 5) = 40m
the distance is 40m