1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Umnica [9.8K]
3 years ago
7

Based on this activity, is kinetic energy always transformed into potential energy?

Physics
2 answers:
nasty-shy [4]3 years ago
8 0

Answer:

No, kinetic energy isn’t always transformed into potential energy. It happens only in some cases.

Explanation:

plato answer

Rus_ich [418]3 years ago
5 0

Potential energy is energy stored in an object due to its position or arrangement. Kinetic energy is energy of an object due to its movement - its motion. ... Potential energy can be converted into kinetic energy, and kinetic energy can be converted into potential energy

You might be interested in
What is emotional strength?​
Ugo [173]

Answer:

Emotional strength is a person's ability to deal with challenges (any kind) and how they can bounce back on that certain situation.

I hope this helps you.

4 0
3 years ago
What is inertia?by Walter Levin..<br>​
Tom [10]

Inertia is directly proportional to mass.

What is Walter Lewin famous for?

Walter Hendrik Gustav Lewin (born January 29, 1936) is a Dutch astrophysicist and former professor of physics at the Massachusetts Institute of Technology.

Lewin earned his doctorate in nuclear physics in 1965 at the Delft University of Technology and was a member of MIT's physics faculty for 43 years beginning in 1966 until his retirement in 2009.

According to Walter Levin,

The concept of moment of inertia is demonstrated by rolling a series of cylinders down an inclined plane.

Inertia is the resistance of any physical object to a change in its velocity. This includes changes to the object's speed, or direction of motion. An aspect of this property is the tendency of objects to keep moving in a straight line at a constant speed when no forces act upon them.

By rolling a series of cylinders down on an inclined plane , he demonstrated that a cylinder have a smooth friction.

He compares the rolling cylinder by using hollow cylinder and a heavy cylinder , and finalize the result that a hollow cylinder moves slowly but the heavy cylinder move faster.

Hence , By doing this experiment he explained about the inertia that Inertia depend on the mass of the object. As the heavy the object it will take more time to travel or move.

Learn more about inertia here:brainly.com/question/3268780

#SPJ1

7 0
1 year ago
Which parts of the electric circuit considered as fuse ​
Marizza181 [45]

Answer:

Rewirable or Kit – Kat Type Fuses are a type of Low Voltage (LV) Fuses. They are most commonly used in house wiring, small industries and other small current applications. Rewirable Fuses consists of two main parts: a Fuse Base, which contains the in and out terminal, and a Fuse Carrier, which holds the Fuse Element.

3 0
2 years ago
Read 2 more answers
A wood block, after being given a starting push, slides down a ramp at a constant speed. what is the angle of the ramp above hor
Stells [14]

The solution for the problem is:

Constant speed means Fnet = 0. 
Let m = mass of wood block and Θ = angle of ramp; then if µk = 0.35 …

The computation would be:


Fnet = 0 = mg (sin Θ) - (µk) (mg) (cos Θ) 
mg (sin Θ) = µk (mg) (cos Θ) 
µk = tan Θ 
Θ = arctan(µk)

= arctan (0.35)

≈ 19.3°

5 0
3 years ago
Compare the circular velocity of a particle orbiting in the Encke Division, whose distance from Saturn 133,370 km, to a particle
Ket [755]

Answer:

The particle in the D ring is 1399 times faster than the particle in the Encke Division.

Explanation:

The circular velocity is define as:

v = \frac{2 \pi r}{T}  

Where r is the radius of the trajectory and T is the orbital period

To determine the circular velocity of both particles it is necessary to know the orbital period of each one. That can be done by means of the Kepler’s third law:

T^{2} = r^{3}

Where T is orbital period and r is the radius of the trajectory.

Case for the particle in the Encke Division:

T^{2} = r^{3}

T = \sqrt{(133370 Km)^{3}}

T = \sqrt{(2.372x10^{15} Km)}

T = 4.870x10^{7} Km

It is necessary to pass from kilometers to astronomical unit (AU), where 1 AU is equivalent to 150.000.000 Km ( 1.50x10^{8} Km )

1 AU is defined as the distance between the earth and the sun.

\frac{4.870x10^{7} Km}{1.50x10^{8}Km} . 1AU

T = 0.324 AU

But 1 year is equivalent to 1 AU according with Kepler’s third law, since 1 year is the orbital period of the earth.

T = \frac{0.324 AU}{1 AU} . 1 year

T = 0.324 year

That can be expressed in units of days

T = \frac{0.324 year}{1 year} . 365.25 days  

T = 118.60 days

<em>Circular velocity for the particle in the </em><em>Encke Division</em><em>:</em>

v = \frac{2 \pi r}{T}

v = \frac{2 \pi (133370 Km)}{(118.60 days)}

For a better representation of the velocity, kilometers and days are changed to meters and seconds respectively.

118.60 days .\frac{86400 s}{1 day} ⇒ 10247040 s

133370 Km .\frac{1000 m}{1 Km} ⇒ 133370000 m

v = \frac{2 \pi (133370000 m)}{(10247040 s)}

v = 81.778 m/s

Case for the particle in the D Ring:

For the case of the particle in the D Ring, the same approach used above can be followed

T^{2} = r^{3}

T = \sqrt{(69000 Km)^{3}}

T = \sqrt{(3.285x10^{14} Km)}

T = 1.812x10^{7} Km

\frac{1.812x10^{7} Km}{1.50x10^{8}Km} . 1 AU

T = 0.120 AU

T = \frac{0.120 AU}{1 AU} . 1 year

T = 0.120 year

T = \frac{0.120 year}{1 year} . 365.25 days  

T = 43.83 days

<em>Circular velocity for the particle in </em><em>D Ring</em><em>:</em>

v = \frac{2 \pi r}{T}

v = \frac{2 \pi (69000 Km)}{(43.83 days)}

For a better representation of the velocity, kilometers and days are changed to meters and seconds respectively.

43.83 days . \frac{86400 s}{1 day} ⇒ 3786912 s

69000 Km . \frac{1000 m}{ 1 Km} ⇒ 69000000 m

v = \frac{2 \pi (69000000 m)}{(3786912 s)}

v = 114.483 m/s

 

\frac{114.483 m/s}{81.778 m/s} = 1.399            

The particle in the D ring is 1399 times faster than the particle in the Encke Division.  

7 0
3 years ago
Other questions:
  • Given equal time periods, which statement is correct?
    13·2 answers
  • A drag racer starts her car from rest and accelerates at 11.9 m/s2 for the entire distance of 400 m. What is the speed of the ra
    12·1 answer
  • What is the mass m of the elevator? use g=10m/s2 for the magnitude of the acceleration of gravity.
    13·1 answer
  • FIRST PERSON WILL BE MARKED BRAINLIEST, THANKED, AND RATED A 5!
    10·2 answers
  • Which of the device has the highest resistance?
    11·2 answers
  • Which form of energy is due to an object's position or location​
    15·2 answers
  • Giving me the points are enough <br>​
    6·1 answer
  • Which of the following statements would be best described as an expression of an attitude that is low in accessibility and high
    14·2 answers
  • A combustion reaction is represented by __________________.
    13·1 answer
  • At what angle two forces P + Q and (P - Q) act so that their resultant is :
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!