Answer:
Dx = -0.5
Dy = -0.25
Explanation:
Two vectors are given in rectangular components form as follows:
A = i + 6j
B = 3i - 7j
It is also given that:
A - B - 4D = 0
so, we solve this to find D vector:
(i + 6j) - (3i - 7j) - 4D = 0
- 2i - j = 4D
D = - (2/4)i - (1/4)j
D = - (1/2)i - (1/4)j
<u>D = - 0.5i - 0.25j</u>
Therefore,
<u>Dx = -0.5</u>
<u>Dy = -0.25</u>
Answer:
Explanation:
Clinical Thermometer is meant for clinical purposes. It is developed for measuring the human body temperature. A laboratory thermometer, which is colloquially known as the lab thermometer, is used for measuring temperatures other than the human body temperature.
Answer:
18.63 N
Explanation:
Assuming that the sum of torques are equal
Στ = Iα
First wheel
Στ = 5 * 0.51 = 3 * (0.51)² * α
On making α subject of formula, we have
α = 2.55 / 0.7803
α = 3.27
If we make the α of each one equal to each other so that
5 / (3 * 0.51) = F2 / (3 * 1.9)
solve for F2 by making F2 the subject of the formula, we have
F2 = (3 * 1.9 * 5) / (3 * 0.51)
F2 = 28.5 / 1.53
F2 = 18.63 N
Therefore, the force F2 has to 18.63 N in order to impart the same angular acceleration to each wheel.
It's not so much a "contradiction" as an approximation. Newton's law of gravitation is an inverse square law whose range is large. It keeps people on the ground, and it keeps satellites in orbit and that's some thousands of km. The force on someone on the ground - their weight - is probably a lot larger than the centripetal force keeping a satellite in orbit (though I've not actually done a calculation to totally verify this). The distance a falling body - a coin, say - travels is very small, and over such a small distance gravity is assumed/approximated to be constant.
Answer: waves transport energy, not water. As a wave crest passes, the water particles move in circular paths. The movement of the floating inner tube is simulacra to the movement of the water particles. Water particles rise as a wave crest approaches.
Explanation: