Meters would be the best way to record the length
Answer:
A) Therefore if I double the masses with are in the two terrine they are simplified and the radii of the speeds remain the same
B) If the masses are maintained and the speeds are doubled, the radius of the two speeds remains the same
Explanation:
A vehicle crash problem must be solved with the equation of the moment,
Initial instant Before crash
p₀ = m v₁ + mv₂
After the crash
= m
+ m 
p₀ = 
If the speed ratio before and after the crash is one
p₀ /
= 1
We can assume that initially one of the cars was stopped
m v₁₀ = m 
v₁₀ = 
For the two speeds to be equal, the masses of the vehicles must be the same.
A) Therefore if I double the masses with are in the two terrine they are simplified and the radii of the speeds remain the same
B) If the masses are maintained and the speeds are doubled, the radius of the two speeds remains the same
Answer:
t = 13.43 s
Explanation:
In order to find the minimum time required by the plane to stop, we will use the first equation of motion. The first equation of motion is written as follows:
Vf = Vi + at
where,
Vf = Final Velocity of the Plane = 0 m/s (Since, the plane finally stops)
Vi = Initial Velocity of the Plane = 95 m/s
a = deceleration of the plane = - 7.07 m/s²
t = minimum time interval needed to stop the plane = ?
Therefore,
0 m/s = 95 m/s + (- 7.07 m/s²)t
t = (95 m/s)/(7.07 m/s²)
<u>t = 13.43 s</u>
Answer
given,
time = 10 s
ship's speed = 5 Km/h
F = m a
a is the acceleration and m is mass.
In the first case
F₁=m x a₁
where a₁ = difference in velocity / time
F₁ is constant acceleration is also a constant.
Δv₁ = 5 x 0.278
Δv₁ = 1.39 m/s

a₁ = 0.139 m/s²
F₂ =m x a₂
F₃ = F₂ + F₁
Δv₃ = 19 x 0.278
Δv₃ = 5.282 m/s
a₃=Δv₂ / t

a₃ = 0.5282 m²/s
m a₃=m a₁ + m a₂
a₃ = a₂ + a₁
0.5282 = a₂ + 0.139
a₂=0.3892 m²/s
F₂ = m x 0.3892...........(1)
F₁ = m x 0.139...............(2)
F₂/F₁
ratio = 
ratio = 2.8
Answer:
The movement of thermal energy from a substance at a higher temperature to one at a lower temperature is called heat. When a substance is heated, it gains thermal energy. Therefore, its particles move faster and its temperature rises.
Explanation: