Answer:
F = 2,894 N
Explanation:
For this exercise let's use Newton's second law
F = m a
The acceleration is centripetal
a = v² / r
Angular and linear variables are related.
v = w r
Let's replace
F = m w² r
The radius r and the length of the rope is related
cos is = r / L
r = L cos tea
Let's replace
F = m w² L cos θ
Let's reduce the magnitudes to the SI system
m = 101.7 g (1 kg / 1000g) = 0.1017 kg
θ = 5 rev (2π rad / rev) = 31,416 rad
w = θ / t
w = 31.416 / 5.1
w = 6.16 rad / s
F = 0.1017 6.16² 0.75 cos θ
F = 2,894 cos θ
The maximum value of F is for θ equal to zero
F = 2,894 N
kinetic energy or potential energy
sorry idek i learned this like 2 years ago
Answer:
a.18.5 m/s
b.1.98 s
Explanation:
We are given that

a.Let
be the initial velocity of the ball.
Distance,x=30 m
Height,h=1.8 m





Substitute the values





Initial velocity of the ball=18.5 m/s
b.Substitute the value then we get

t=1.98 s
Hence, the time for the ball to reach the target=1.98 s
The statement shows a case of rotational motion, in which the disc <em>decelerates</em> at <em>constant</em> rate.
i) The angular acceleration of the disc (
), in revolutions per square second, is found by the following kinematic formula:
(1)
Where:
- Initial angular speed, in revolutions per second.
- Final angular speed, in revolutions per second.
- Time, in seconds.
If we know that
,
y
, then the angular acceleration of the disc is:


The angular acceleration of the disc is
radians per square second.
ii) The number of rotations that the disk makes before it stops (
), in revolutions, is determined by the following formula:
(2)
If we know that
,
y
, then the number of rotations done by the disc is:

The disc makes 3.125 revolutions before it stops.
We kindly invite to check this question on rotational motion: brainly.com/question/23933120