Answer:
<h2>a</h2><h2> move with an increasing velocity</h2>
Answer:
0.41
Explanation:
given,
mass of the car, m = 2290 Kg
initial speed = 10.5 m/s
mass of another car, M = 2780 Kg
distance moved = 2.80 m
coefficient of friction = ?
conservation of energy
m u = (M + m) V
2290 x 10.5 = (2290 + 2780) V
V = 4.74 m/s
using equation of motion
v² = u² + 2 a s
4.74² = 2 x a x 2.8
a = 4.02 m/s²
now using equation
a = μ g
4.02 = μ x 9.8
μ = 0.41
Answer:
F = 2389.603 N
Explanation:
Given:
Mass m = 1,369.4 kg
Initial velocity u = 28.9 m/s
Final velocity v = 20 m/s
Time t = 5.1 s
Find:
Net force
Computation:
a = (v - u)/t
a = (20 - 28.9)/5.1
a = -1.745 m/s²
F = ma
F = (1369.4)(1.745)
F = 2389.603 N
Answer:

Explanation:
let
be the mass attached, let
be the spring constant and let
be the positive damping constant.
-By Newton's second law:

where
is the displacement from equilibrium position. The equation can be transformed into:
shich is the equation of motion.