I'm assuming that C is carbon.

55.1259 g of C
Answer:
The answer is Relative plenitude alludes to the amount of a specific isotope is available in a given measure of test.
Explanation:
The 'relative plenitude' of an isotope implies the level of that specific isotope that happens in nature. Most components are comprised of a blend of isotopes. The total of the rates of the particular isotopes must indicate 100%. The relative nuclear mass is the weighted normal of the isotopic masses. The percent plenitude of every sort of sweets reveals to you what number of every sort of Aufbau there are in each 100 CANDIES. Percent wealth is additionally relative plenitude. This is only a method for giving us a photo on which kind exists all the more every now and again.
the correct IUPAC name of the compound is 1-Butanal.
<h3>What are IUPAC names?</h3>
It is a system of naming organic compounds based on the longest carbon-to-carbon single bonds. It does not matter whether these longest chains are continuous or in a ring.
Thus, when the compound with the chemical formula, CH3-CH2-CH2CHO is considered. The longest carbon-to-carbon chain is 4. The 1st carbon carries a functional group known as an aldehyde.
Aldehydes are equipped with the carbonyl group and have the general formula R−CH=O. They are also sometimes referred to as formyl.
Aldehydes are named after their parent alkane chains with a slight modification. The 'e' is replaced with 'al'
The aldehyde in this case has four carbons. This means that the parent alkane is Butane. Therefore, the name of the compound will be 1-Butanal.
More on IUPAC names can be found here: brainly.com/question/16631447
#SPJ1
KH₂PO₄ hydrolyzes as;
H₂PO₄⁻ + H₂O ↔ H₃PO₄ + OH⁻
Let x amount of H₂PO₄⁻ has reacted with water then,
Kb₁ = [H₃PO₄][OH⁻] / [H₂PO₄⁻]
[H₂PO₄⁻] = 0.8-x M
Kb₁ = x² / (0.8 - x)
Given Ka₁ = 7.5 x 10⁻³
so Kb₁ = 1 x 10⁻¹⁴ / (7.5 x 10⁻³) = 1.33 x 10⁻¹²
From this information:
1.33 x 10⁻¹² = x² / 0.8
x = [OH⁻] = 1.03 x 10⁻⁶ M
pOH = - log (1.03 x 10⁻⁶) = 5.99
pH = 14 - pOH = 14 - 5.99 = 8.01
Its hydrogen atom is a high conductor of electricity