The magnitude of the E-field decreases as the square of the distance from the charge, just like gravity.
Location ' x ' is √(2² + 3²) = √13 m from the charge.
Location ' y ' is √ [ (-3)² + (-2)² ] = √13 m from the charge.
The magnitude of the E-field is the same at both locations.
The direction is also the same at both locations ... it points toward the origin.
Answer:
A
Explanation:
I only think its A because of the gravity part...sorry im not good at explaining
If the mass of the object and the volume of the object is determined;
Then, the density of the object is determined by taking the ratio of the mass and volume.
<h3>What is density of an object?</h3>
The density of an object is the ratio of the mass and volume of that object.
Mathematically;
To determine the density of an object therefore, the physical characteristics of mass and the volume of the object are measured.
The mass of the object is obtained using a scale or a balance.
The volume of the object if a solid is obtained using a displacement bottle. If it is a liquid, a measuring cylinder is used.
The density of the object is then obtained by taking the ratio of the mass and the volume of the object.
In conclusion, the density of an object is determined from the volume and mass ratio.
Learn more about density at: brainly.com/question/1354972
#SPJ1
Answer:
310.5 J
Explanation:
The total work done by Martha is equal to the increase in gravitational potential energy of the package, which is equal to

where
(mg) = 45 N is the weight of the package
is the increase in height of the package
The package is carried up 3 flights of stairs, each one with a height of 2.3 m, so the total increase in heigth is

And so, the work done by Martha is

Answer:
Explanation:
In order to solve this problem we need to make a free body diagram of the book and the forces that interact on it. In the picture below you can see the free body diagram with these forces.
The person holding the book is compressing it with his hands, thus exerting a couple of forces of equal magnitude and opposite direction with value F.
Now the key to solving this problem is to analyze the equilibrium condition (Newton's third law) on the x & y axes.
To find the weight of the book we simply multiply the mass of the book by gravity.
W = m*g
W = 1.3[kg] * 9.81[m/s^2]
W = 12.75 [N]