Answer:
3.1 × 10^- 7 m and 2.1 × 10^-7 m
Explanation:
First we must convert each value of energy to Joules by multiplying its value by 1.6 ×10^-19. After that, we can now obtain the wavelength from E= hc/λ
Where;
h= planks constant
c= speed of light
λ= wavelength of light
For 6.0ev;
E= 6.0 × 1.6 ×10^-19
E= 9.6 × 10^-19 J
From
E= hc/λ
λ= hc/E
λ= 6.6 × 10^-34 × 3 × 10^8/9.6 × 10^-19
λ= 2.1 × 10^-7 m
For 4.0 eV
4.0 × 1.6 × 10^-19 = 6.4 × 10^-19 J
E= hc/λ
λ= hc/E
λ= 6.6 × 10^-34 × 3 × 10^8/6.4 × 10^-19
λ= 3.1 × 10^- 7 m
Answer:
86.4 N downward
Explanation:
Force: This can be defined as the product of mass and acceleration of a body.
The S.I unit of Force is Newton(N).
The Expression of force is given as,
F = ma ................ Equation 1
Where F = force of the parachute harness, m = mass of the skydiver, a = acceleration of the skydiver.
Given: m = 72 kg, a = 1.2 m/s²
Substitute into equation 1
F = 72(1.2)
F = 86.4 N down ward.
Hence the force on the parachute harness = 86.4 N downward
Complete Question
In lightning storms, the potential difference between the Earth and the bottom of the thunderclouds can be as high as 350 MV (35,000,000 V). The bottoms of the thunderclouds are typically 1500 m above the earth, and can have an area of 120 km^2. Modeling the earth/cloud system as a huge capacitor, calculate
a. the capacitance of the earth-cloud system
b. the charge stored in the "capacitor"
c. the energy stored in the capacitor
Answer:
a

b

c

Explanation:
From the question we are told that
The potential difference is 
The distance of the bottom of the thunderstorm from the earth is d = 1500 m
The area is 
Generally the capacitance of the earth cloud system is mathematically represented as

Here
is the permitivity of free space with as value 
So

=> 
Generally the charge stored in the capacitor (earth-cloud system) is mathematically represented as

=> 
=> 
Generally the energy stored in the capacitor is mathematically represented as

=> 
=> 
Answer:
Kinetic frictional force will be equal to 56.84 N
Explanation:
We have given mass of the skier m = 58 kg
Acceleration due to gravity 
Coefficient of kinetic friction 
We have to find the kinetic frictional force
Kinetic frictional force is given by

So kinetic frictional force will be equal to 56.84 N
Explanation:
The speed of the red car, relative to the blue car, is:
v = 75 m/s − 50 m/s
v = 25 m/s