1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vredina [299]
3 years ago
14

The spring is released and a 0.10-kilogram plastic sphere is fired from the launcher. Calculate the maximum speed with which the

plastic sphere will be launched. [Neglect friction.] [Show all work, including the equation and substitution with units.]
Physics
1 answer:
tigry1 [53]3 years ago
6 0

Answer:

A) The elastic potential energy stored in the spring when it is compressed 0.10 m is 0.25 J.

B) The maximum speed of the plastic sphere will be 2.2 m/s

Explanation:

Hi there!

I´ve found the complete problem on the web:

<em>A toy launcher that is used to launch small plastic spheres horizontally contains a spring with a spring constant of 50. newtons per meter. The spring is compressed a distance of 0.10 meter when the launcher is ready to launch a plastic sphere.</em>

<em>A) Determine the elastic potential energy stored in the spring when the launcher is ready to launch a plastic sphere.</em>

<em>B) The spring is released and a 0.10-kilogram plastic sphere is fired from the launcher. Calculate the maximum speed with which the plastic sphere will be launched. [Neglect friction.] [Show all work, including the equation and substitution with units.]</em>

<em />

A) The elastic potential energy (EPE) is calculated as follows:

EPE = 1/2 · k · x²

Where:

k = spring constant.

x = compressing distance

EPE = 1/2 · 50 N/m · (0.10 m)²

EPE = 0.25 J

The elastic potential energy stored in the spring when it is compressed 0.10 m is 0.25 J.

B) Since there is no friction, all the stored potential energy will be converted into kinetic energy when the spring is released. The equation of kinetic energy (KE) is the following:

KE = 1/2 · m · v²

Where:

m = mass of the sphere.

v = velocity

The kinetic energy of the sphere will be equal to the initial elastic potential energy:

KE = EPE = 1/2 · m · v²

0.25 J = 1/2 · 0.10 kg · v²

2 · 0.25 J / 0.10 kg = v²

v = 2.2 m/s

The maximum speed of the plastic sphere will be 2.2 m/s

You might be interested in
Suppose you have two meter sticks, one made of steel and one made of invar (an alloy of iron and nickel), which are the same len
Mekhanik [1.2K]

Answer:

  • The difference in length for steel is 2.46 x 10⁻⁴ m
  • The difference in length for invar is 1.845 x 10⁻⁵ m

Explanation:

Given;

original length of steel, L₁ = 1.00 m

original length of invar, L₁ = 1.00 m

coefficients of volume expansion for steel, \gamma_{st.} =  3.6 × 10⁻⁵ /°C

coefficients of volume expansion for invar, \gamma_{in.} =  2.7 × 10⁻⁶ /°C

temperature rise in both meter stick, θ = 20.5°C

Difference in length, can be calculated as:

L₂ = L₁ (1 + αθ)

L₂  = L₁ + L₁αθ

L₂  - L₁ = L₁αθ

ΔL = L₁αθ

Where;

ΔL is difference in length

α is linear expansivity = \frac{\gamma}{3}

Difference in length, for steel at 20.5°C:

ΔL =  L₁αθ

Given;

L₁ = 1.00 m

θ = 20.5°C

\alpha = \frac{\gamma}{3} = \frac{3.6*10^{-5}}{3} = 1.2*10^{-5} /^oC

ΔL  = 1 x 1.2 x 10⁻⁵ x 20.5 = 2.46 x 10⁻⁴ m

Difference in length, for invar at 20.5°C:

ΔL =  L₁αθ

Given;

L₁ = 1.00 m

θ = 20.5°C

\alpha = \frac{\gamma}{3} = \frac{2.7*10^{-6}}{3} = 0.9*10^{-6}/^oC

ΔL  = 1 x 0.9 x 10⁻⁶ x 20.5 = 1.845 x 10⁻⁵ m

8 0
3 years ago
The following graph shows the force exerted on and the displacement of object being pulled
Tomtit [17]

The work done to pull the object 7.0 m is the total area under the graph from 0.0 m to 7.0 m, determined as 245 J.

<h3>Work done by the applied force</h3>

The area under force versus displacement graph is work done.

The total work done by pulling the object 7 m, can be grouped into two areas;

  • First area, A1 = area of triangle from 0 m to 2.0 m
  • Second area, A2 = area of trapezium, from 2.0 m to 7.0 m

A1 = ¹/₂ bh

A1 = ¹/₂ x (2) x (20)

A1 = 20 J

A2 = ¹/₂(large base + small base) x height

A2  = ¹/₂[(7 - 2) + (7-3)] x 50

A2 = ¹/₂(5 + 4) x 50

A2 = 225 J

<h3>Total work done </h3>

W = A1 + A2

W = 20 J + 225 J

W = 245 J

Learn more about work done here: brainly.com/question/8119756

3 0
2 years ago
Please help me on this
Fynjy0 [20]

combustion of fossil fuels would be the correct answer when dealing with the alteration of the carbon cycle.

3 0
3 years ago
In major league baseball, the pitcher's mound is 60 feet from the batter. If a pitcher throws a 85 mph fastball, how much time e
Nostrana [21]
The given from your problem are the following:
V = 85mph (This is miles per hour)
d = 60 feet

If you notice the units do not match. Before we can do anything else, we need to make the figures match. 

In this case, we will convert 85miles per hour to feet per hour.  There are 5,280 feet in 1 mile. 
\frac{85miles }{hr} x \frac{5,280feet}{1miles} = \frac{448,800feet}{hr}

But wait! If you think about the scenario, you are looking for how long it will take for the ball to reach the bat. The most applicable unit of time to use here is second. It would be very hard to really measure a short and instantaneous event in hours. So we convert it into feet per second: 

There are 3,600 seconds in 1 hour.

\frac{448,800feet }{hour} x \frac{1hour}{3,600seconds} = \frac{448,800feet}{3,600 seconds} = 124.67ft/s

So now we have our new given as:

v = 124.67ft/s
d = 60 ft

The formula for time can be derived from the formula from velocity, which is:
velocity = \frac{distance}{time}

The formula of time will then be:
time= \frac{distance}{velocity}

All you need to do is plug in what you know and solve for what you don't know. 

time= \frac{60feet}{124.67ft/s}

time= 0.48s

The answer then is 0.48s.

If you want this in hours, just divide the value in seconds by 3,600. The answer would then be 0.00013hr. (See how small it is? This is why seconds would be a more appropriate measure.)
8 0
3 years ago
What is amperage?
Shtirlitz [24]

question one b

question 2 i think a

3  d

4 c

5 not sure but wanting to say d

6  letter b

7 not sure

8 idk

9 i have no idea

3 0
3 years ago
Other questions:
  • What does 'equivalence' mean in circuit diagrams​
    9·1 answer
  • 1. Balanced forces acting on an
    10·2 answers
  • Fluids can flow and change shape to fit their containers. Which two states are<br> fluids?
    10·1 answer
  • The graph below shows the velocity of a car as it attempts to set a speed record. At what point is the car the fastest?
    14·1 answer
  • What electric field strength would store 12.5 JJ of energy in every 6.00 mm3mm3 of space?
    13·1 answer
  • Suppose you have two point charges of opposite sign. As you move them farther and farther apart, the potential energy of this sy
    7·2 answers
  • Which is hotter, Canopus or Vega? How much brighter?
    11·1 answer
  • How are the terms atom and element related
    15·2 answers
  • Materials such as rubber, plastics, and glass do not carry electrical currents and<br> are known as
    9·1 answer
  • Two gliders collide on an air track. Glider 1 has a mass of 7.0 kg, and glider 2 has a mass of 4.0 kg. Before the collision, gli
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!