1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jenyasd209 [6]
3 years ago
14

When an electron is displaced in a semiconductor, the hole that's left behind is

Physics
1 answer:
morpeh [17]3 years ago
8 0

Answer:

A. attracted to the negative terminal of the voltage source.

Explanation:

When an electron is displaced in a semiconductor, the hole that's left behind is

A. attracted to the negative terminal of the voltage source.

The electron leaving leaves a net + charge, which is attracted to the negative terminal.

You might be interested in
Why do nonmetals have a negative oxidation number
galina1969 [7]
Oxygen has<span> a higher electro negativity that then Sulfur, so Sulfur </span>will<span> " lose" electrons to Oxygen and that </span>is<span> the electrons </span>will be<span> pulled closer to the Oxygen causing, for oxygen to </span>have a negative<span> charge and the Sulfur to </span>have<span> a positive charge</span>
8 0
4 years ago
A wave has a frequency of 655 he And is traveling at 455m/sec. what is the wavelength
Vlada [557]

Answer:

v=wavelength ×f

wavelength=v/f=455/655=0.694m

3 0
3 years ago
A 0.750 kg block is attached to a spring with spring constant 13.0 N/m . While the block is sitting at rest, a student hits it w
trapecia [35]

To solve this problem we will apply the concepts related to energy conservation. From this conservation we will find the magnitude of the amplitude. Later for the second part, we will need to find the period, from which it will be possible to obtain the speed of the body.

A) Conservation of Energy,

KE = PE

\frac{1}{2} mv ^2 = \frac{1}{2} k A^2

Here,

m = Mass

v = Velocity

k = Spring constant

A = Amplitude

Rearranging to find the Amplitude we have,

A = \sqrt{\frac{mv^2}{k}}

Replacing,

A = \sqrt{\frac{(0.750)(31*10^{-2})^2}{13}}

A = 0.0744m

(B) For this part we will begin by applying the concept of Period, this in order to find the speed defined in the mass-spring systems.

The Period is defined as

T = 2\pi \sqrt{\frac{m}{k}}

Replacing,

T = 2\pi \sqrt{\frac{0.750}{13}}

T= 1.509s

Now the velocity is described as,

v = \frac{2\pi}{T} * \sqrt{A^2-x^2}

v = \frac{2\pi}{T} * \sqrt{A^2-0.75A^2}

We have all the values, then replacing,

v = \frac{2\pi}{1.509}\sqrt{(0.0744)^2-(0.750(0.0744))^2}

v = 0.2049m/s

7 0
3 years ago
A student throws a rock upwards. The rock reaches a maximum height 2.4 seconds after it was released.
Allisa [31]

Answer:

23.52 m/s

Explanation:

The following data were obtained from the question:

Time taken (t) to reach the maximum height = 2.4 s

Acceleration due to gravity (g) = 9.8 m/s²

Initial velocity (u) =..?

At the maximum height, the final velocity (v) is zero. Thus, we can obtain how fast the rock (i.e initial velocity)

was thrown as follow:

v = u – gt (since the rock is going against gravity)

0 = u – (9.8 × 2.4)

0 = u – 23.52

Collect like terms

0 + 23.52 = u

u = 23.52 m/s

Therefore, the rock was thrown at a velocity of 23.52 m/s.

7 0
4 years ago
A planet exerts a gravitational force of magnitude 9e22 N on a star. If the planet were 2 times closer to the star (that is, if
Dmitrij [34]

To solve this problem we will use the related concepts in Newtonian laws that describe the force of gravitational attraction. We will use the given value and then we will obtain the proportion of the new force depending on the Radius. From there we will observe how much the force of attraction increases in the new distance.

Planet gravitational force

F_p = 6*10^{22}N

F_p = \frac{GMm}{R^2}

F_p = 9*10^{22}N

Distance between planet and star

r = \frac{R}{2}

Gravitational force is

F = \frac{GMm}{r^2}

Applying the new distance,

F = \frac{GMm}{(\frac{R}{2})^2}

F =  4\frac{GMm}{R^2}

Replacing with the previous force,

F = 4F_p

Replacing our values

F= 4(9*10^{22}N)

F = 36*10^{22}N

Therefore the magnitude of the force on the star due to the planet is  36*10^{22}N

5 0
3 years ago
Other questions:
  • What part of the water is affected by a wave in deep water
    13·1 answer
  • Write this number in standard notation. 4.702 x 10–4
    6·1 answer
  • An athlete always runs before taking a jump . why?
    6·1 answer
  • A satellite orbits earth at 800 m from the earth's center. Gravity at this location is 6.2 m/s^2. What is the velocity of the sa
    15·1 answer
  • A circular coil has a 10.0 cm radius and consists of 30 closely wound turns of wire. An externally produced magnetic field of 2.
    10·1 answer
  • Newton’s third law of motion is also known as action/_______?
    11·2 answers
  • Problem #3: 3.6. A diode has wdo = 0.4 µm and φj = 0.85 V. (a) What reverse bias is required to triple the depletion-layer width
    5·1 answer
  • A man-made satellite of mass 6105 kg is in orbit around the earth, making one revolution in 430 minutes. What is the magnitude o
    7·1 answer
  • Explain electrostatic force
    11·1 answer
  • The name of the bright star near the center that the other stars appear to be circling is:
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!