The relationships can best be described as follows:
As frequency increases, wavelength decreases. <span>The greater the </span>energy<span>, the larger the frequency </span>and<span> the shorter (smaller) the </span>wavelength<span>. </span>
<span>a) wavelength vs. frequency = inversely proportional
b) wavelength vs. energy = inversely proportional
c) frequency vs. energy = directly proportional
Hope this answers the questions. Have a nice day. Feel free to ask more questions.</span>
Imagine you are in a swimming pool 30m deep. Assuming you know that water is denser than air, you would know that the 30m of water above you will carry more weight, and press down on your body. Say you were in a swimming pool 60m deep, you would be sandwiched between 30m of water pressing down on you, and the upthrust created by the 30m of water below you.
In a building 30m up, the pressure will be regulated, as you are in a building. The floor will be strong enough to support the weight of the body, and the body will not recoil into itself.
Answer:
The magnitude of angular acceleration is
.
Explanation:
Given that,
Initial angular velocity, 
When it switched off, it comes o rest, 
Number of revolution, 
We need to find the magnitude of angular acceleration. It can be calculated using third equation of rotational kinematics as :
So, the magnitude of angular acceleration is
. Hence, this is the required solution.
Answer:
F = 878.9 N
Explanation:
The electrostatic force of attraction or repulsion is given by Coulomb's Law as follows:
F = kq₁q₂/r²
where,
F = Force pf repulsion between balloons = ?
k = Coulomb's Constant = 9 x 10⁹ N.m²/C²
q₁ = q₂ = magnitudes of 1st and 2nd charge = 0.0025 C
r = distance between balloons = 8 m
Therefore,
F = (9 x 10⁹ N.m²/C²)(0.0025 C)(0.0025 C)/(8 m)²
<u>F = 878.9 N</u>