A- PRICE
B-QUANTITY
C-SUPPLY
D-DEMAND
E-EQUILIBRIUM POINT
Explanation:
It is the Supply Demand curve in Economics. It gives relationship between price and quantity
Answer:
<u>Matter is a substance that has inertia and occupies physical space. According to modern physics, matter consists of various types of particles, each with mass and size.Matter can exist in several states, also called phases. The three most common states are known as solid, liquid and gas.</u><u>Matter is the Stuff Around You</u><u> </u><u>o</u><u>r</u><u> </u><u>Atoms and compounds are all made of very small parts of matter. Those atoms go on to build the things you see and touch every day. Matter is defined as anything that has mass and takes up space (it has volume).</u><u>Solid ice, water and steam are few examples of matter touched in everyday life. Subatomic particles are also considered as matter.</u>
Answer:
Only option A is correct
Explanation:
From the concept of Doppler effect, only speed matters. Thus, the faster a vehicle is moving, the closer together the sound waves get compressed and the higher the frequency. For example, for a very fast vehicle traveling at the speed of sound; the compressions are all right on top of each other. Thus, faster speed means closer compressions and higher frequencies. Hence, option only option A must be true because X is a higher frequency and so it must be going faster. The distance to the person will affect the volume but will not the pitch so Option B is not correct. Option C too is not correct because It doesn’t matter whether you are speeding up or slowing down, it only matters who is going faster. For example, from option c concept, if truck X was going 10 m/h and speeding up while truck Y was going 50 mph and slowing down, it would not meet the requirement that X has a higher frequency because only actual speed matters, not what is happening to that speed. Thus only option A is the correct answer
Frequency is inversely proportional to wavelength.
Wavelength is the spacial period, and more generally the frequency is inversely proportional to the period.
If the wave's speed if c, then f=c/l where l is the wavelength.