Answer:
I study physics too, want me to study with you?
Answer:
271.862 N/m
Explanation:
From Hook's Law,
mgh = 1/2ke²............... Equation 1
Where
m = mass of the ball, g = acceleration due to gravity, k = spring constant, e = extension, h = height fro which the ball was dropped.
Making k the subject of the equation,
k =2mgh/k²....................... Equation 2
Note: The potential energy of the ball is equal to the elastic potential energy of the spring.
Given: m = 60.3 g = 0.0603 kg, g = 9.8 m/s², e = 4.68317 cm = 0.0468317 m, h = 53.7 cm = 0.537 m
Substitute into equation 2
k = 2(0.0603)(9.8)(0.537)/0.048317²
k = 0.6346696/0.0023345
k = 271.862 N/m
Answer
given,
heat added to the gas,Q = 3300 kcal
initial volume, V₁ = 13.7 m³
final volume, V₂ = 19.7 m³
atmospheric pressure, P = 1.013 x 10⁵ Pa
a) Work done by the gas
W = P Δ V
W = 1.013 x 10⁵ x (19.7 - 13.7)
W = 6.029 x 10⁵ J
b) internal energy of the gas = ?
now,
change in internal energy
Δ U = Q - W
Q = 3300 x 10³ cal
Q = 3300 x 10³ x 4.186 J
Q = 1.38 x 10⁷ J
now,
Δ U = 1.38 x 10⁷ - 6.029 x 10⁵
Δ U = 1.32 x 10⁷ J
Answer:

Explanation:
Since the system is in international space station
so here we can say that net force on the system is zero here
so Force by the astronaut on the space station = Force due to space station on boy
so here we know that
mass of boy = 70 kg
acceleration of boy = 
now we know that


now for the space station will be same as above force




A heat engine is a device that uses heat to produce useful work.