Answer:
Explanation:
For the first case , the expression for electrostatic force can be given by the following .
F = K x 8Q x 2Q / r² where k is a constant .
F = K 16 Q² / r²
When they touch , some charge is neutralized . Net charge remaining
= 8Q - 2 Q = 6 Q
Charge on each sphere = 6Q/2 = 3 Q .
Force between them
F₁ = k 3Q x 3 Q / r² = k 9 Q² / r²
F₁ / F = 9 / 16
F₁ = 9 F / 16 .
Answer:
When the blood and the dialysate are flowing in the same direction, as the the dialysate and the blood move away from the region of higher concentration of the urea, to a region distant from the source, the concentration of urea in the blood stream and in the dialysis reach equilibrium and diffusion across the semipermeable membrane stops within the higher filter regions such as II, III, IV or V
However, for counter current flow, as the concentration of the urea in the blood stream becomes increasingly lesser the, it encounters increasingly unadulterated dialysate coming from the dialysate source, such that diffusion takes place in all regions of the filter
Explanation:
Answer:
0.558 atm
Explanation:
We must first consider that both gases behaves like ideal gases, so we can use the following formula: PV=nRT
Then, we should consider that, whithin a mixture of gases, the total pressure is the sum of the partial pressure of each gas:
P₀ = P₁ + P₂ + ....
P₀= total pressure
P₁=P₂= is the partial pressure of each gass
If we can consider that each gas is an ideal gas, then:
P₀= (nRT/V)₁ + (nRT/V)₂ +..
Considering the molecular mass of O₂:
M O₂= 32 g/mol
And also:
R= ideal gas constant= 0.082 Lt*atm/K*mol
T= 65°C=338 K
4.98 g O₂ = 0.156 moles O₂
V= 7.75 Lt
Then:
P°O₂=partial pressure of oxygen gas= (0.156x0.082x338)/7.75
P°O₂= 0.558 atm
The deeper you go, the more rock must be supported so the more force is required and the pressure goes up.
It expands and pushes the crack further aprt