Answer:
1. [OH⁻] = 0.30 M ; 2. [OH⁻] = 1.54x10⁻⁶M ; 3. [OH⁻] = 1.32x10⁻¹³M
Explanation:
Remember the rule:
pH + pOH = 14
pOH = 14 - pH
10*⁻pOH (you have to elevate 10, to -pOH)
10*⁻pOH = [OH⁻]
1. 14 - 13.48 = 0.52
10⁻⁰°⁵² = 0.30
2. 14 - 8.19 = 5.81
10⁻⁵°⁸¹ = 1.54x10⁻⁶
3. 14 - 2.12 = 12.88
10⁻¹²°⁸⁸ = 1.32x10⁻¹³
Since volume and temperature are constant, this means that pressure and <u>number of moles</u> are <u>directly </u>proportional. the sample with the largest <u>number of moles</u> will have the <u>high </u>pressure.
Since, the ideal gas equation is also called ideal gas law. So, according to ideal gas equations,
PV = nRT
- P is pressure of the sample
- T is temperature
- V is volume
- n is the number of moles
- R is universal gas constant
At constant volume and temperature the equation become ,
P ∝ nR
since, R is also constant. So, conclusion of the final equation is
P ∝ n
The number of moles and pressure of the sample is directly proportion. So, on increasing number of moles in the sample , pressure of the sample also increases.
learn about ideal gas law
brainly.com/question/4147359
#SPJ4
Weeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee