1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cestrela7 [59]
3 years ago
13

Find the potential inside and outside a uniformly charged solid sphere whose radius is R and whose total charge is q. Use infini

ty as your reference point. Compute the gradient of V in each region, and check that it yields the correct field. Sketch V(r).

Physics
1 answer:
amid [387]3 years ago
8 0

Answer:

Recall that the electric field outside  a uniformly charged solid sphere  is exactly the same as if the charge were all at a point in the centre of the  sphere:

E_{outside} =\frac{1}{4\pi(e_{0})}\frac{Q}{r^{2} } r^{'}

lnside the sphere, the electric field also acts like a point charge, but only for the proportion of the charge further inside than the point r:

E_{inside} =\frac{1}{4\pi(e_{0})}\frac{Q}{R^{2} } \frac{r}{R} r^{'}

To find the potential, we integrate the electric field on a path from infinity (where of course, we take the direct path so that we can write the it as a 1 D integral):

V(r>R)=\int\limits^r_\infty {\frac{1}{4\pi(e_{0)} }\frac{Q}{r^2}  } \, dr=\frac{q}{4\pi(e_{0)} } \frac{1}{r} \\V(r

=\frac{q}{4\pi e_{0} } [\frac{1}{R} -\frac{r^{2}-R^{2}  }{2R^{3} } ]

∴NOTE: Graph is attached

You might be interested in
Explain why people have different skin colors?
stiks02 [169]

I think it because of UV rays ultra violet ray which can make their colors different

5 0
3 years ago
Luis and Aisha conducted an experiment. They exerted different forces on four objects. Their results are shown in the table.
lesya692 [45]

Answer:

Object 3 has greatest acceleration.

Explanation:

Objects               Mass                                Force

1                            10 kg                               4 N              

2                           100 grams                       20 N

3                            10 grams                         4 N

4                             1 kg                                 20 N

Acceleration of object 1,

a_1=\dfrac{F_1}{m_1}\\\\a_1=\dfrac{4}{10}\\\\a_1=0.4\ m/s^2

Acceleration of object 2,

a_2=\dfrac{F_2}{m_2}\\\\a_2=\dfrac{20}{0.1}\\\\a_2=200\ m/s^2

Acceleration of object 3,

a_3=\dfrac{F_3}{m_3}\\\\a_3=\dfrac{4}{0.01}\\\\a_3=400\ m/s^2

Acceleration of object 4,

a_4=\dfrac{F_4}{m_4}\\\\a_4=\dfrac{20}{1}\\\\a_3=20\ m/s^2

It is clear that the acceleration of object 3 is 400\ m/s^2 and it is greatest of all. So, the correct option is (3).

4 0
3 years ago
Read 2 more answers
Coherent light of frequency 6.37×1014 Hz passes through two thin slits and falls on a screen 88.0 cm away. You observe that the
IgorC [24]

Answer:

The distance between the two slits is 40.11 μm.

Explanation:

Given that,

Frequency f= 6.37\times10^{14}\ Hz

Distance of the screen l = 88.0 cm

Position of the third order y =3.10 cm

We need to calculate the wavelength

Using formula of wavelength

\lambda=\dfrac{c}{f}

where, c = speed of light

f = frequency

Put the value into the formula

\lambda=\dfrac{3\times10^{8}}{6.37\times10^{14}}

\lambda=471\ nm

We need to calculate the distance between the two slits

m\times \lambda=d\sin\theta

d =\dfrac{m\times\lambda}{\sin\theta}

Where, m = number of fringe

d = distance between the two slits

Here, \sin\theta =\dfrac{y}{l}

Put the value into the formula

d=\dfrac{3\times471\times10^{-9}\times88.0\times10^{-2}}{3.10\times10^{-2}}

d=40.11\times10^{-6}\ m

d = 40.11\ \mu m

Hence, The distance between the two slits is 40.11 μm.

7 0
3 years ago
Compared with a force, a torque involves
ycow [4]
A rotational movement.
6 0
3 years ago
Car A starts out traveling at 35.0 km/h and accelerates at 25.0 km/h2 for 15.0 min. Car B starts out traveling at 45.0 km/h and
lawyer [7]

1 kilometre=1000 metre

      1 hour = 3600 second

       1\ km/hr=\frac{1000}{3600} m/s

       1\ km/hr=\frac{5}{18} m/s

The initial velocity of car A is 35.0 km/hr i.e

                                         35.0\ km/hr=35*\frac{5}{18} m/s

                                                                   = 9.72 m/s

The initial velocity of car B is 45 km/hr =12.5 m/s

The initial velocity of car C is 32 km/hr = 8.89 m/s

The initial velocity of car D is 110 km/hr=30.56 m/s

The acceleration of car A is given as  25\ km/hr^2

                                            =\ 25*\frac{1000}{3600*3600} m/s^2

                                            =0.00192901234 m/s^2

The time taken by car A = 15 min.

From equation of kinematics we know that-

                                 v= u+at      [Here v is the final velocity and a is the acceleration and t is the time]

Final velocity of A,  v = 9.72 m/s +[0.00192901234×15×60]m/s

                                   =11.456111106 m/s

The acceleration of B is given as    15\ km/hr^2

                                    =0.00115740740740 m/s^2

The time taken by car B =20 min

The final velocity of B is -

                             v= u+at

                               = u-at    [Here a is negative due to deceleration]

                               =12.5 m/s +[0.0011574074074×20×60]

                               =13.8888888.....

                               =13.9

The acceleration of C is given as    40\ km/hr^2          

                                                            =\ 0.003086419753 m/s^2

The time taken by car C =30 min

The final velocity of C is-

                                v = u+at

                                   =8.89 m/s+[0.003086419753×30×60] m/s

                                   =14.4455555555..m/s

                                   =14.45 m/s

The car C is decelerating.The deceleration is given as-  60\ km/hr^2

                                                                      =0.0046296296296m/s^2

The time taken by car D= 45 min.

The final velocity of the car D is-

                     v =u+at

                        =30.56 -[0.00462962962962×45×60]m/s

                        =18.06 m/s

Hence from above we see that the magnitude of final velocity car C and B is close to 15 m/s. The car C is very close as compared to car B.

                 


3 0
3 years ago
Other questions:
  • The momentum of an electron is 1.75 times larger than the value computed non-relativistically. What is the speed of the electron
    13·1 answer
  • Which change will always result in an increase in the gravitational force between two objects?
    5·2 answers
  • You are an industrial engineer with a shipping company. As part of the package- handling system, a small box with mass 1.60 kg i
    15·1 answer
  • WILL GIVE BRAINLIEST ANSWER!!!!!!!!!!!!!!!!!!!!!!!!! ITS WORTH 99 POINTS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    11·2 answers
  • Use Snell's Law to solve the following:
    13·1 answer
  • A sensor is used to monitor the performance of a nuclear reactor. The sensor accu-rately reflects the state of the reactor with
    13·1 answer
  • 29. Jorge is conducting an investigation into perfectly inelastic collisions using equipment where two carts collide with
    11·1 answer
  • Can someone please answer this, ill give you brainliest and your getting 100 points.
    5·2 answers
  • A current carrying wire is placed in a permanent magnetic field as shown in the diagram below. Determine the direction of the fo
    14·1 answer
  • How an electric car might still run on fossil fuel
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!