Answer:
Rectangular path
Solution:
As per the question:
Length, a = 4 km
Height, h = 2 km
In order to minimize the cost let us denote the side of the square bottom be 'a'
Thus the area of the bottom of the square, A = 
Let the height of the bin be 'h'
Therefore the total area, 
The cost is:
C = 2sh
Volume of the box, V =
(1)
Total cost,
(2)
From eqn (1):

Using the above value in eqn (1):


Differentiating the above eqn w.r.t 'a':

For the required solution equating the above eqn to zero:


a = 4
Also

The path in order to minimize the cost must be a rectangle.
Given:
(Initial velocity)u=20 m/s
At the maximum height the final velocity of the ball is 0.
Also since it is a free falling object the acceleration acting on the ball is due to gravity g.
Thus a=- 9.8 m/s^2
Now consider the equation
v^2-u^2= 2as
Where v is the final velocity which is measured in m/s
Where u is the initial velocity which is measured in m/s
a is the acceleration due to gravity measured in m/s^2
s is the displacement of the ball in this case it is the maximum height attained by the ball which is measured in m.
Substituting the given values in the above formula we get
0-(20x20)= 2 x- 9.8 x s
s= 400/19.6= 20.41m
Thus the maximum height attained is 20.41 m by the ball
Answer:
move the decimal 6 places to the left.
Explanation:
um I assume you meant to say area m^3
Hey there!
We are given ,
Acceleration, a = -2m/s^2
Initial velocity , u = 15m/s
Time , t = 5 seconds
We know that ,
V=u+at
Now , final speed ,
V = 15+(-2)(5)
V = 15-10
V = 5 m/s -> final speed
Hope this helps you dear :)
Have a good day <3