The formula is m = D x V
D = <span>13.69 g/cm^3.
</span>V = <span>15.0 cm^3
the mass of the liquid mercury is m= </span>13.69 g/cm^3 x 15.0 cm^3 = 195g
the molar mass of Hg is 200,
1 mole of Hg = 200g Hg, so #mole of Hg= 195 / 200 = 0.97 mol
but we know that
1 mole = 6.022 E23 atoms
0.97 mole=?
6.022 E23 atoms x 0.97 / 1 mole = 5.84 E23 atoms
Oxidation half reaction is written as follows when using using reduction potential chart
example when using copper it is written as follows
CU2+ +2e- --> c(s) +0.34v
oxidasation is the loos of electron hence copper oxidation potential is as follows
cu (s) --> CU2+ +2e -0.34v
Answer:
248 mL
Explanation:
According to the law of conservation of energy, the sum of the heat absorbed by water (Qw) and the heat released by the coffee (Qc) is zero.
Qw + Qc = 0
Qw = -Qc [1]
We can calculate each heat using the following expression.
Q = c × m × ΔT
where,
- ΔT: change in the temperature
163 mL of coffee with a density of 0.997 g/mL have a mass of:
163 mL × 0.997 g/mL = 163 g
From [1]
Qw = -Qc
cw × mw × ΔTw = -cc × mc × ΔTc
mw × ΔTw = -mc × ΔTc
mw × (54.0°C-25.0°C) = -163 g × (54.0°C-97.9°C)
mw × 29.0°C = 163 g × 43.9°C
mw = 247 g
The volume corresponding to 247 g of water is:
247 g × (1 mL/0.997 g) = 248 mL
By applying the Boyle's equation and substituting our given data the volume of the container was found to be 418.14 Litres
<h3>
Boyle's Law</h3>
Given Data
- number of moles of Ne = 5.1169 mol
We know that the relationship between pressure and temperature is given as
PV = nRT
R = 0.08206
Making the volume subject of formula we have
V= nRT/P
Substituting our given data to find the volume we have
V = 5.1169*0.08206*911/0.9148
V = 382.522353554/0.9148
V = 418.14 L
Learn more about Boyle's law here:
brainly.com/question/469270