Answer:
1 - e, 2 - k, 3 - a, 4 - i, 5 - b,
Explanation:
The ratio of the amount of analyte in the stationary phase to the amount in the mobile phase. --- Retention factor.
Time it takes after sample injection into the column for the analyte peak to appear as it exits the column. -- Retention time
The process of extracting a component that is adsorbed to a given material by use of an appropriate solvent system. -- Elution
Measure of chromatographic column efficiency. The greater its value, the more efficient the column. -- Theoretical plate number
Gas, liquid, or supercritical fluid used to transport the sample in chromatographic separations. -- Mobile phase
Immiscible and immobile, it is packed within a column or coated on a solid surface. -- Stationary phase
Answer:
Mass = 73.73 g
Explanation:
Given data:
Mass of Mg used = 24.48 g
Mass of HCl used = ?
Mass of hydrogen gas produced = 2.04 g
Mass of Magnesium chloride produced = 96.90 g
Solution:
Chemical equation:
Mg + 2HCl → MgCl₂ + H₂
Number of moles of Mg:
Number of moles = mass/ molar mass
Number of moles = 24.48 g/ 24.305 g/mol
Number of moles = 1.01 mol
Now we will compare the moles of Mg with HCl from balance chemical equation.
Mg : HCl
1 ; 2
1.01 : 2/1× 1.01 = 2.02 mol
Mass of HCl react:
Mass = number of moles × molar mass
Mass = 2.02 × 36.5 g/mol
Mass = 73.73 g
Answer: 10 electrons
Explanation:
N represents Nitrogen. Nitrogen has an atomic number of 7, this means in ground state it has 7 electrons also.
But N-3, means Nitrogen has gained 3 more electrons. So, we have 10 electrons
Answer:
"1 M" will be the right solution.
Explanation:
The given values are:
Number of moles,
= 2 moles
Volume of solution,
= 2000 mL
or,
= 2 L
Now,
The molarity of the solution will be:
= ![\frac{Moles}{Liters}](https://tex.z-dn.net/?f=%5Cfrac%7BMoles%7D%7BLiters%7D)
On substituting the values, we get
= ![\frac{2}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B2%7D)
= ![1 \ M](https://tex.z-dn.net/?f=1%20%5C%20M)