Answer:
The size of an isolated atom can't be measured because we can't determine the location of the electrons that surround the nucleus. We can estimate the size of an atom, however, by assuming that the radius of an atom is half the distance between adjacent atoms in a solid. This technique is best suited to elements that are metals, which form solids composed of extended planes of atoms of that element. The results of these measurements are therefore often known as metallic radii.
.Explanation:
A. Cesium because reactivity of alkali metals increases from the top to the bottom of the group.
Answer:
Silver has to give up one electron.
Explanation:
Silver is a transition element and has a partially filled 4d- orbital having 9 electrons and a 5s orbital having 2 electrons in it. In order to achieve stability, silver must have completely filled d-orbital having a maximum number of 10 electrons in it.
Therefore, one electron from 5s orbital jumps to 4d orbital to make it stable. Now, 5s orbital has only one electron, and it will be easy for silver to lose this electron to attain a stable electronic configuration.
Answer:
The answer to this can be arrived at by clculating the mole fraction of atoms higher than the activation energy of 10.0 kJ by pluging in the values given into the Arrhenius equation. The answer to this is 20.22 moles of Argon have energy equal to or greater than 10.0 kJ
Explanation:
From Arrhenius equation showing the temperature dependence of reaction rates.
where
k = rate constant
A = Frequency or pre-exponential factor
Ea = energy of activation
R = The universal gas constant
T = Kelvin absolute temperature
we have

Where
f = fraction of collision with energy higher than the activation energy
Ea = activation energy = 10.0kJ = 10000J
R = universal gas constant = 8.31 J/mol.K
T = Absolute temperature in Kelvin = 400K
In the Arrhenius equation k = Ae^(-Ea/RT), the factor A is the frequency factor and the component e^(-Ea/RT) is the portion of possible collisions with high enough energy for a reaction to occur at the a specified temperature
Plugging in the values into the equation relating f to activation energy we get
or f =
= 20.22 moles of argon have an energy of 10.0 kJ or greater
The relationship would be inversely proportional, meaning that as the volume increases, the pressure decreases, and the opposite is true as well, as the pressure increases, the volume decreases.