Answer:
True the plastic will float because of the principle of flotation or buoyancy
Explanation:
Buoyancy explains it all!!
Buoyancy is the upward force/upthrust experienced by a body immersed totally or partially in a liquid.
According to the principle of flotation:
<em>"when a body is totally or partially immersed in liquid it experiences an upthrust which is equal to the volume of fluid displaced"</em>
The plastic will float due to the fact the average density of the total volume of the plastic and the air inside it is less than the same volume of water it is floating in
Answer:
measured in GHz?
Explanation:
im not sure what the context is it depends on what your lesson is on
It is either A or C. i hope i could help. if not im really sorry
If you have a lump of solid at its melting point ... like ice at 32°F ...
you have to put a certain amount of heat into it just to change it
to water at 32°F. That amount of heat, that's used just to change
a solid lump into liquid without changing its temperature, is called
the heat of fusion for that substance.
The number is different for every substance.
For water, it takes 336 joules of heat to melt 1 gram of ice
into 1 gram of water, all at 32°F (0°C).
That's an enormous latent heat of fusion ... more than almost any
other known substance. That's why ice is such a good choice
when you need something to put in your drink to cool it down.
Ice absorbs a huge amount of heat before it melts and the drink
gets watered down.
Answer:
E) is described by all of these
Explanation:
The magnetic force on a charged particle is expressed as:
F = qv * B = qvBsinθ
Where,
q = charge on particle
θ = angle between the magnetic field and the particle velocity.
v = velocity of the particle
B = magnitude of field vector
From here, we could denote that magnetic force, F depends on charge on particle, velocity of particle, magnitude of field vector.
The magnetic force on a charged particle is at right angles to both the velocity of the particle. The magnetic force and magnetic field in a charged particle are perpendicular to each other, the right hand rule is used to determine the direction of force.
The correct option is E.