We know V=IR (Ohm's law).
We are given R=180Ω and I=0.1A, then V=(0.1AΩ)(180Ω). Therefore
V=18V
Given:
Amount of heat produced = 100 kcal per hour
Let's find the rate of energy production in joules.
We know that:
1 calorie = 4.184 Joules
1 kcal = 4.184 Joules
To find the rate of energy production in Joules, we have:

Therefore, the rate of energy production in joules is 418.4 kJ/h which is equivalent to 418400 Joules
ANSWER:
418.4 kJ/h
Answer:
The new distance is d = 0.447 d₀
Explanation:
The electric out is given by Coulomb's Law
F = k q₁ q₂ / r²
This electric force is in balance with tension.
We reduce the charge of sphere B to 1/5 of its initial value (
=q₂ = q₂ / 5) than new distance (d = n d₀)
dat
q₁ = 
q₂ = 
r = d₀
In order for the deviation to maintain the electric force it should not change, so we apply the Coulomb equation for the two points
F = k q₁ q₂ / d₀²
F = k q₁ (q₂ / 5) / (n d₀)²
.k q₁ q₂ / d₀² = q₁ q₂ / (5 n² d₀²)
5 n² = 1
n = √ 1/5
n = 0.447
The new distance is
d = 0.447 d₀
Newton's three forces, normal, tension and friction, are present in a surprising number of physical situations
Newton's Laws, that describe the relationship between an obejct and the forces acting upon it, apply in almost every physical situation, from quantum mechanics to electricity.
The correct answer is:
Newton’s laws can explain the forces that occur between objects every day