Answer:
C. 100.7 amu
Explanation:
Isotopes of an element are atoms of an element with the same atomic number but different atomic masses. Each atomic mass of an isotope is known as an isotopic mass. An element that exhibits isotope, that is, that have two or more isotopes has a relative atomic mass that is not a whole number.
Relative atomic mass of X is the sum of the products of the relative abundances of each isotope and its isotopic mass.
For Isotope ¹⁰⁰X: 30% × 100 = 30 amu
For Isotope ¹⁰¹X: 70% × 101 = 70.7 amu
Relative atomic mass of X = (30 + 70.7) amu = 100.7 amu
Therefore, the approximate atomic mass of X is 100.7 amu
Answer:
1 - e, 2 - k, 3 - a, 4 - i, 5 - b,
Explanation:
The ratio of the amount of analyte in the stationary phase to the amount in the mobile phase. --- Retention factor.
Time it takes after sample injection into the column for the analyte peak to appear as it exits the column. -- Retention time
The process of extracting a component that is adsorbed to a given material by use of an appropriate solvent system. -- Elution
Measure of chromatographic column efficiency. The greater its value, the more efficient the column. -- Theoretical plate number
Gas, liquid, or supercritical fluid used to transport the sample in chromatographic separations. -- Mobile phase
Immiscible and immobile, it is packed within a column or coated on a solid surface. -- Stationary phase
Answer:
c. a proton
Explanation:
A neutron is most equal in mass to a proton.
A neutron is a subatomic particle without any charges on them.
A proton is a subatomic particle with a positive charge.
- the mass of a proton and neutron are the most similar in an atom.
- the mass of a proton is 1.67 x 10⁻²⁷kg
- So also is the mass of a neutron
- the mass of an electron is 9.11 x 10⁻³¹kg
Molar mass of A l 2 (S O 4 ) 3 = 342.15 g/mol
7.2g/ 342.15 g/mol
you can get number of moles.
then multiply that by12
Answer:
Three things that can generate electrical energy is <u>coal, natural gas, and petroleum.</u> (They generate from fossil fuels).