This is an incomplete question, here is a complete question.
The Henry's law constant for oxygen dissolved in water is 4.34 × 10⁹ g/L.Pa at 25⁰C.If the partial pressure of oxygen in air is 0.2 atm, under atmospheric conditions, calculate the molar concentration of oxygen in air-saturated and oxygen saturated water.
Answer : The molar concentration of oxygen is, 
Explanation :
As we know that,

where,
= molar solubility of
= ?
= partial pressure of
= 0.2 atm = 1.97×10⁻⁶ Pa
= Henry's law constant = 4.34 × 10⁹ g/L.Pa
Now put all the given values in the above formula, we get:


Now we have to molar concentration of oxygen.
Molar concentration of oxygen = 
Therefore, the molar concentration of oxygen is, 
Answer:
Distillation is the process by which sugar can be separated from the sugar solution.
Explanation:
Distillation, or classical distillation, is the process of separating the components or substances from a liquid mixture by using selective <u>boiling and condensation.</u>
Answer:
0.01917 m^3/kg.
Explanation:
Given:
P = 15 MPa
= 1.5 × 10^4 kPa
T = 350 °C
= 350 + 273
= 623 K
Molar mass of water, m = (2 × 1) + 16
= 18 g/mol
= 0.018 kg/mol
R = 0.4615 kPa·m3/kg·K
Using ideal gas equation,
P × V = n × R × T
But n = mass/molar mass
V = (R × T)/P
V/M = (R × T)/P × m
= (0.4615 × 623)/1.5 × 10^4
= 0.01917 m^3/kg.
Remember that a cation will be smaller than its neutral atom, and an anion will be larger than its neutral atom. This would automatically eliminate answer choices A and D.
Also keep in mind that atomic radii decreases from left to right as you move along a periodic table. It also decreases from bottom up.
Atomic radii increases as you move from right to left and as you go from up to down.
As bromine is higher up in the periodic table than Iodine, it would have a smaller radius. Iodine would have a larger radius.
The correct answer is B. Br