Answer:
The magnitude of the electric field are
and 
Explanation:
Given that,
Radius of inner shell = 11.0 cm
Radius of outer shell = 14.0 cm
Charge on inner shell 
Charge on outer shell 
Suppose, at r = 11.5 cm and at r = 20.5 cm
We need to calculate the magnitude of the electric field at r = 11.5 cm
Using formula of electric field

Where, q = charge
k = constant
r = distance
Put the value into the formula


The total charge enclosed by a radial distance 20.5 cm
The total charge is

Put the value into the formula


We need to calculate the magnitude of the electric field at r = 20.5 cm
Using formula of electric field

Put the value into the formula


Hence, The magnitude of the electric field are
and 
Answer:
The era of planet formation ended when the remaining hydrogen and helium gas of the solar nebula was swept into interstellar space by the solar winds.
Explanation:
The Solar System is formed from a molecular cloud (compound by gas and dust). If there is a near perturbation to the cloud, maybe due to a supernova explosion, the molecular cloud will collapse under its own gravity. Then, in some point it starts to rotate and will accrete all the material in a disk around the protostar¹.
Inside the disk, dust particles start to collide and accrete until they form planetesimals². As a consequence of the gravitational force of the star, rocky and metallic particles will be more attracted to the inner part of the Solar System (close to the Sun) since they have more mass than gas.
Then, when the star has the necessary pressure and temperature to initiate nuclear reactions in its core, it will be able to emit huge amounts of energy, better known as solar winds. These winds will expel gas (hydrogen and helium) from the Solar System more easily than the rocky and metallic particles.
Notice that when such event occurs, rocky and gaseous planets were already formed.
Key terms:
¹Protostar: A young star.
²Planetesimals: Object formed by many fragments due to the gravitational attraction between them.
Velocity is the same as the formula for speed, the only difference is
velocity has direction. Velocity is distance over time. Given is 4,400
kilometers travelled west in 4 hours. Applying the given equation, we wil have
4,400/4 = 1,100 km/hr west
Answer:

Explanation:
From the question we are told that:
Number of turns 

Conductor each with side length 
Current 
Magnetic field
Generally the equation for the total magnetic moment M is mathematically given by


