The loss of matter is called the mass defect. The missing matter is converted into energy. You can actually calculate the amount of energy produced during a nuclear reaction with fairly simple equation developed by Albert Einstein; E = mc^2. In this equation, E is the amount of energy produced, m is the missing mass, or the mass defect, and c is the speed of light, which is a rather large number. The speed of light is squared, making that part of the equation a very large number that, even when multiplied by a small amount of mass, yields a large amount of energy.
Answer:
(A) No
(B) Speed decreases
Explanation:
(A) since there is nothing propelling the boat and the friction between the ice and the boat and also air resistance is negligible the net force of the system in the horizontal direction is zero and hence there is no change in the horizontal momentum of the boat.
(B) Since the person had not velocity in the horizontal direction before landing on the boat but now has one after landing on the boat, the speed of the boat will decrease because the momentum has to be conserved (remember there is no change in it).
The article is not found here but surveys are important because they are representative samples of a population.
<h3>What is a survey?</h3>
A survey is a useful tool based on population samples, which is used to make statistical analyses in a given investigation.
Differences in surveys are generally due to small sample sizes, which may lead to errors in the analysis of data.
In conclusion, the article is not found here but surveys are important because they are representative samples of a population.
Learn more about surveys here:
brainly.com/question/13624055
#SPJ1
Answer:
C. water is more dense and viscous
Explanation:
Rapid gas exchange can be accomplished more easily in air than in water because water is more dense and viscous.
Gases have the greatest ease of diffusion of their respective particles, as occurs in air, since their molecules have higher speeds and have more distance from each other than liquids.
The molecular diffusion rate in liquids is much less than in gases. The molecules of a liquid are very close (liquids are more dense and viscous) to each other compared to those of a gas, then the gas molecules hits with the molecules of the liquid with more frequency and this causes that the gas moves slower than in other gas (for example in air).