the equation of the line allows us to find the answer is
y = -27.8 t + 97.4
The equation of a line in a linear relationship between two variables, its general expression is
y = A x + B
in this case the slope is the quantity that the independent variable in this case A = -27.8 m / s
The cut-off point that is the value of the dependent variable for x = is b = 97.4 m
In this case we see that the slope has a unit of [m / s] and the dependent variable is a unit of length, therefore the independent variable must have a unit of time [s] so that the entire equation is in units of length
y = -27.8 t + 97.4
[m] = [m / s] [s] + [m]
[m] = [m]
The other two magnitudes with are necessary to write the equation r is the mean square root and gives an idea that the values also fit the line, the best value is 1
In conclusion, the equation of the line allows us to find the answer is
y = -27.8 t + 97.4
learn more about the equation inear here:
brainly.com/question/22851869
I think the correct answer is the third statement, electron from escaping from the tube containing the triode. The negative charge on the grid repels any electron in the tube. As a result,the flow of current is controlled. If the field is that strong, all current flow will stop resulting to maintaining the electron cloud in the tube.
Density depends on mass and volume so option D is correct answer. Hope this helps!
I think this type of equation could be conducted in simple division equation since it does not involve drop rate.
we know that there is 500 ml of substance and should be infused within 8 hours period.
So the flow rate in ml/hr would be:
500/8 = 62.5 ml/hr
The hot gases produce their own characteristic pattern of spectral lines, which remain fixed as the temperature increases moderately.
<h3><u>Explanation: </u></h3>
A continuous light spectrum emitted by excited atoms of a hot gas with dark spaces in between due to scattered light of specific wavelengths is termed as an atomic spectrum. A hot gas has excited electrons and produces an emission spectrum; the scattered light forming dark bands are called spectral lines.
Fraunhofer closely observed sunlight by expanding the spectrum and a huge number of dark spectral lines were seen. "Robert Bunsen and Gustav Kirchhoff" discovered that when certain chemicals were burnt using a Bunsen burner, atomic spectra with spectral lines were seen. Atomic spectral pattern is thus a unique characteristic of any gas and can be used to independently identify presence of elements.
The spectrum change does not depend greatly on increasing temperatures and hence no significant change is observed in the emitted spectrum with moderate increase in temperature.