The expression of the electric flux is

Here,
Q = Total charge enclosed in the closed surface
= Permittivity due to free space
Rearranging to find the charge,

Replacing with our values we have finally



The charge enclosed by the box is 0.1684nC
The sign of the charge can be decided by using the direction of the flux. The charge enclosed by the cube can be calculated by using the electric flux and the permitivity of free space.
Answer:
The correct answer is the third option: The kinetic energy of the water molecules decreases.
Explanation:
Temperature is, in depth, a statistical value; kind of an average of the particles movement in any physical system (such as a glass filled with water). Kinetic energy, for sure, is the energy resulting from movement (technically depending on mass and velocity of a system; in other words, the faster something moves, the greater its kinetic energy.
Since temperature is related to the total average random movement in a system, and so is the kinetic energy (related to movement through velocity), as the thermometer measures <u>less temperature</u>, that would mean that the particles (in this case: water particles) are <u>moving slowly</u>, so that: the slower something moves, the lower its kinetic energy.
<u>In summary:</u> temperature tells about how fast are moving and colliding the particles within a system, and since it is <em>directly proportional</em> to the amount of movement, it can be related (also <em>directly proportional</em>) to the kinectic energy.
Percent error is the difference between the experimental value and theoretical value and measures the accuracy of the result found. The larger the error, lesser is the accuracy and vice versa.
Solution:
It is a mathematical way of showing accuracy
The higher the percent error, the less accurate the data set,
Answer:
it tells you that the speed increases until about 20 seconds then keeps a steady pace for 20 seconds then the speed drops and stops at 55 seconds in the process.
Answer:
i) 3.514 s, ii) 5.692 m/s
Explanation:
i) We can use Newton's second law of motion to find out how long does it take for the Eagle to touch down.
as the equation says for free-falling
h = ut +0.5gt^2
Here, h = 10 m, g = acceleration due to gravity = 1.62 m/s^2( on moon surface)
initial velocity u = 0
10 = 0.5×1.62t^2
t = 3.514 seconds
Therefore, it takes t = 3.514 seconds for the Eagle to touch down.
ii) use Newton's 1st equation of motion to calculate the velocity of the lunar module when it hits the surface of the moon
v = u + gt
v = 0+ 1.62×3.514
v= 5.692 m/s