Answer:
Explanation:
Atoms naturally bond with each other in an attempt to have 8 or zero valence electrons. This occurs in salts, covalent bonds, and mettalic bonds. This is how the octet rule demonstrates why atoms bond.
Hope this helps!
Answer:
Vd = 2.42 ×10⁻⁴ m/s
Explanation:
Given: A = 3.00×10⁻⁶ m², I = 7.00 A, ρ = 2.70 g/cm³
To find Drift Velocity Vd=?
Sol
the formula is Vd = I/nqA (n is the number of charge per unit volume)
n = No. of electron in a mole ( Avogadro's No.) / Volume
Volume = Molar mass / density ( molar mass of Al =27 g)
V = 27 g / 2.70 g/cm³ = 10 cm³ = 1 × 10 ⁻⁵ m³
n= (6.02 × 10 ²³) / (1 × 10 ⁻⁵ m³)
n= 6.02 × 10 ²⁸
Now
Vd = (7A) / ( 6.02 × 10 ²⁸ × 1.6 × 10⁻¹⁹ C × 3.00×10⁻⁶ m²)
Vd = 2.42 ×10⁻⁴ m/s
Answer:
68.8 N
Explanation:
From the question given above, the following data were obtained:
Mass (m) of box = 18 Kg
Coefficient of friction (μ) = 0.39
Force of friction (F) =?
Next, we shall determine the normal force of the box. This is illustrated below:
Mass (m) of object = 18 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Normal force (N) =?
N = mg
N = 18 × 9.8
N = 176.4 N
Finally, we shall determine the force of friction experienced by the object. This is illustrated below:
Coefficient of friction (μ) = 0.39
Normal force (N) = 176.4 N
Force of friction (F) =?
F = μN
F = 0.39 × 176.4
F = 68.796 ≈ 68.8 N
Thus, the box experience a frictional force of 68.8 N.
The weight of the cooler is (mg). That's (26)(9.8) = 254.8 Newtons.
Its gravitational potential energy while it's up in the top row is (mgh). That's (254.8)(17.5) = 4,459 Joules.
That's how much work it took to get the cooler up to the top row, and that's the energy it gives up when it moves back down to the bench.
In order to bring it down . . .
-- Gravity does 4,459 joules of work on the cooler.
-- The team assistant does NEGATIVE 4,459 joules of work on it.
Answer:
what is this language
Explanation:
could you maybe mark me brainaist