Answer:
Explanation gives the answer
Explanation:
% Using MATLAB,
% Matlab file : fieldtovar.m
function varargout = fieldtovar(S)
% function that accepts single structure as input, assigning each
% of the field values to user-defined variables
fields = fieldnames(S); % get the field names of the input structure
% check if number of user-defined variables and number of fields in
% structure are equal
if nargout == length(fields)
% if equal assign each value of structure to user-defined varable
for i=1:nargout
varargout{i} = getfield(S,fields{i});
end
else
% if not equal display an error message
error('The number of output variables does not equal the number of fields');
end
end
%This brings an end to the program
Answer:
2.379m
Explanation:
The width = 23m
The depth = 3m
The radius is denoted as R
The wetted area is = A
The perimeter perimeter = P
Hydraulic radius
R = A/P
The area of a rectangular channel
= Width multiplied by Depth
A = 23x3
A = 69m²
Perimeter = (2x3)+23
P = 6+23
P= 29
Hydraulic radius R = 69/29
= 2.379m
This answers the question
Thank you!
Answer:
d= 4.079m ≈ 4.1m
Explanation:
calculate the shaft diameter from the torque, \frac{τ}{r} = \frac{T}{J} = \frac{C . ∅}{l}
Where, τ = Torsional stress induced at the outer surface of the shaft (Maximum Shear stress).
r = Radius of the shaft.
T = Twisting Moment or Torque.
J = Polar moment of inertia.
C = Modulus of rigidity for the shaft material.
l = Length of the shaft.
θ = Angle of twist in radians on a length.
Maximum Torque, ζ= τ × \frac{ π}{16} × d³
τ= 60 MPa
ζ= 800 N·m
800 = 60 × \frac{ π}{16} × d³
800= 11.78 × d³
d³= 800 ÷ 11.78
d³= 67.9
d= \sqrt[3]{} 67.9
d= 4.079m ≈ 4.1m
H is the answer
Step by step