The molar mass of this gas is 92.3 g/mol
Calculation
By use ideal gas equation PV =nRT where
n=mole p=pressure V= volume R = gas constant T= temperature
n = mass /molar mass(MM)
substitute in the equation
PV =(mass/MM)RT
mass = density x volume(V)
Therefore PV =(density xV/ MM) xRT
divide both side by by V
P= (density/Mm) xRT
making MM the subject of the formula
MM = densityPRT
At STP = P= 1 atm, R= 0.0821 L.atm/Mol.k T = 273 K
MM is therefore = 4.12 g/l x 1 atm x 0.081 L.atm/mol.k x 273 K = 92.3 g/mol
solution:
A = 192 x (1/2) ^ (15/5) = 192 x (1/2) ^3 = 192 x 1/8 = 24 mg
Starting by hitting acetylene with NaNH2 to deprotonate, this C-- will attack the C connected to the Br Sn2 style to lengthen the chain by two carbons.
Do this same thing again with the other CH of the acetylene and another bromoethaneto get a six carbon chain, namely, 3-hexyne.
Now, reduce the alkyne to an alkene via H2/Pd/C, and that gives 3-hexene.
John Dalton
"matter cannot be created nor destroyed or divided into smaller particles"
In ionic bonding, an arrow is often drawn on the diagram to show the direction the electrons move to form the ions.
If the concentration of acetyl chloride is increased ten times the rate of reaction is increased ten times.
The conversion of acetyl chloride to methyl acetate is a substitution reaction. Recall that a substitution reaction is one in which a moiety in a molecule is replaced by another.
In this reaction, the CH3O- ion replaces the chloride ion. In the first step, the CH3O- ion attacks the substrate in a slow step. This creates a tetrahedral intermediate. Loss of the chloride ion yields the methyl acetate product.
The rate determining step is the formation of the tetrahedral intermediate. Since the reaction is first order in the acetyl chloride, if its concentration is increased ten times the rate of reaction is increased ten times.
Learn more: brainly.com/question/5624100