Your answer would be c
hope this helps
Answer:
Si hay algo que sucedió entre ustedes raro o un comportamiento que tuviste con esa persona o que te vio hacer asi como le pudieron decir algo de ti que no le gustara a tu amigo hace que se comporte raro contigo
Explanation:
The molecular structure of 1-nitrobutane is
. The structure of 1-nitrobutane is shown below.
An atom's formal charge would be determined by the covalent model of chemical bonding, which assumes that almost all chemical bonds include equal sharing of electrons among all atoms, regardless their relative electronegativity.
The structure for 1-nitrobutane, making sure to add all non-zero formal charges
There are four kind of molecule present in 1-nitrobutane and they are carbon, hydrogen , nitrogen and oxygen. Nitrogen is bonded with two oxygen atom out of them one oxygen atom is attached with single bond and second oxygen atom is bonded with double bond. Nitrogen has positive charge whereas oxygen has negative charge.
It is a kind of alkane in with nitro group is attached with alkane group.
To know more about 1-nitrobutane
brainly.com/question/25045923
#SPJ4
The original mass of krypton 81 that is present in the ice is 6.70 grams.
<h3>How do we calculate original mass?</h3>
Original mass of any substance will be calculated as below for the decomposition reaction is:
N = N₀(1/2)ⁿ, where
N = remaining mass of krypton-81 = 1.675g
N₀ = original mass of krypton-81 = ?
n will be calculated as:
n = T/t, where
T = total time period = 458,000 years
t = half life time = 229,000 years
n = 458,000/229,000 = 2
Now putting all these values on the above equation, we get
N₀ = 1.675 / (1/2)²
N₀ = 6.70 g
Hence required mass is 6.70 g.
To know more about half life time, visit the below link:
brainly.com/question/2320811
Answer:
The partial pressure of BrCl at equilibrium is 0.08 atm.
Explanation:
The equilibrium constant of the reaction is given by =

initial
0 0 0.500 atm
At equilbrium
p p (0.500-2p)
The equilibrium constant's expression of the reaction is given by ;
![K_p=\frac{[BrCl]^2}{[Br_2][Cl_2]}](https://tex.z-dn.net/?f=K_p%3D%5Cfrac%7B%5BBrCl%5D%5E2%7D%7B%5BBr_2%5D%5BCl_2%5D%7D)

Solving for p:
p = 0.21 atm
The partial pressure of BrCl at equilibrium is:
(0.500-2p) = (0.500 - 2 × 0.21 )atm = 0.08 atm[/tex]