TLDR: It will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
This is an example that requires you to investigate the properties that occur in electric generators; for example, hydroelectric dams produce electricity by forcing a coil to rotate in the presence of a magnetic field, generating a current.
To solve this, we need to understand the principles of electromotive forces and Lenz’ Law; changing the magnetic field conditions around anything with this potential causes an induced current in the wire that resists this change. This principle is known as Lenz’ Law, and can be described using equations that are specific to certain situations. For this, we need the two that are useful here:
e = -N•dI/dt; dI = ABcos(theta)
where “e” describes the electromotive force, “N” describes the number of loops in the coil, “dI” describes the change in magnetic flux, “dt” describes the change in time, “A” describes the area vector of the coil (this points perpendicular to the loops, intersecting it in open space), “B” describes the magnetic field vector, and theta describes the angle between the area and mag vectors.
Because the number of loops remains constant and the speed of the coils rotation isn’t up for us to decide, the only thing that can increase or decrease the emf is the change in magnetic flux, represented by ABcos(theta). The magnetic field and the size of the loop are also constant, so all we can control is the angle between the two. To generate the largest emf, we need cos(theta) to be as large as possible. To do this, we can search a graph of cos(theta) for the highest point. This occurs when theta equals 90 degrees, or a right angle. Therefore, the electromotive potential will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
Hope this helps!
Answer:
I think like 2024 or 25
Explanation:
Elon musk will probably go
Answer:
car travel
precipitation
O temperature
Explanation:
Jet streams which is the ability of the object to move at a high speed due to its power is common among some given set of objects. Some are powered by the objects fuel while others are entirely different.
The above given options are actually affected by the jet streams.
Mechanical energy is the sum of kinetic energy and potential energy
The velocity is 6.75
The velocity in the equation stated above can be calculated as follows
m= 2,000
p= 2.25
y= 6000
velocity= 2.25 × 6000/ 2000
= 13500/2000
= 6.75
Hence the velocity is 6.75
Please see the link below for more information.
brainly.com/question/23547288?referrer=searchResults