Answer:
304.89m
Explanation:
Given
acceleration a = 2.52m/s²
final speed v = 39.2m/s
initial speed = 0m/s (car accelerates from rest)
Using the equation of motion below to get the distance of Doc brown from Marty;
v² = u²+2as
substitute the given parameters
39.2² = 0²+2(2.52)s
1536.64 = 0+5.04s
divide both sides by 5.04
1536.64/5.04 = 5.04s/5.04
rearrange the equation
5.04s/5.04 = 1536.64/5.04
s = 304.89m
Hence He and Marty must stand at 304.89m to allow the car to accelerate from rest to a speed of 39.2 m/s?
Answer:
As the "plates" on each side of ridges in the seafloor are pulled away, lava comes up from the middle, hardens and "records" the current magnetic field.
Explanation:
Answer:
Here the circuit in which a 4Ω resistor resistor is connected in series and two 8Ω resistor resistors are connected in parallel. Also, ammeter and voltmeter connected in series and parallel circuit respectively.
Now,
The maximum power of each resistance is 16 W
The 4Ω resistor is linked in series with the circuit.
so, P o w e r = I
two
R, here i is the current through the resistor resistor R
1 6 = I
two
∗ 4 Ω
i = 2A
Now 2A passes through parallel resistors of 8Ω resistance.
we know that, in parallel, the potential difference must be constant,
the current is divided into two parts, because the same resistance current in each resistance will be half. then the current through each resistor in parallel is
2 A
two
.
= 1 A
So finally the current through the 4Ω resistor = 2 A
current through each 8Ω resistor = 1 A
Explanation:
I hope this answer has helped you
Answer:
A vacuum
Explanation:
Sound waves are examples of mechanical waves. Mechanical waves are waves which are transmitted through the vibrations of the particles in a medium.
For example, sound waves in air consist of oscillations of the air particles, which vibrate back and forth (longitudinal wave) along the direction of propagation of the wave itself.
Given this definition of mechanical wave, we see that such a wave cannot propagate if there is no medium, because there are no particles that would oscillate. Therefore, among the choices given, the following one:
a vacuum
represent the only situation in which a sound wave cannot propagate through: in fact, there are no particles in a vacuum, so the oscillations cannot occur. In all other cases, instead, sound waves can propagate.
Given that,
Atmospheric Pressure = 14.7 psi
Cooking Pressure = 14.7 +11.1 = 25.8 psi
Take, Atmospheric Temperature = 25 °C
Cooking Temperature = ??
Since, we know that Gas equation is given by:
PV = nRT
or
P ∝ T
P1 / T1 = P2 / T2
14.7/ 25 = 25.8/ T2
T2 = 25*25.8/14.7
T2 = 43.87 °C
The cooking pressure will be 43.87 °C.