Answer:
option D
Explanation:
given,
length of the pipe, L = 0.96 m
Speed of sound,v = 345 m/s
Resonating frequency when both the end is open

n is the Harmonic number
2nd overtone = 3rd harmonic
so, here n = 3
now,

f = 540 Hz
The common resonant frequency of the string and the pipe is closest to 540 Hz.
the correct answer is option D
Data:
u=0 m/s is the initial velocity of the plane
v=62 m/s is the final velocity of the plane (at which the plane takes off)
a=1.7 m/s^2 is the acceleration of the plane
To find the minimum distance S the plane needs to take off, we can use the following equation:

Re-arranging it and substituting the numbers, we find

Answer:
C. Beats
Explanation:
When waves are interfering with each other, the sound is louder in some places and softer in others. As a result, we hear pulses or beats in the sound.
Answer:
0.75 NC⁻¹
Explanation:
Electric field intensity ( or strength of the electric field ) is the force per a 1 C charge,
So, Force (F) = Electric field intensity(E) × Charge (q)
F = E×q ⇒ q = F/E
= 4.5×10⁻⁴/6×10⁻⁴ = 0.75 NC⁻¹
According to cool om's law electric fields are generated due to charges. When charges are same there is a repulsive force acted on both charges. When charges are opposite there is a attraction force acted on both charges.
According to cool om's law,
F =G×q1×q2 / r²
F = force exerted of two charges
q1 , q2 = charges
r = distance between two charges
And also Electric field intensity is a vector which has a magnitude and direction both. Direction is depending on a charge and the sign of the charge
<span>a.current varies throughout a parallel circuit.
Hope this helps!</span>