Answer:
8.56 m/s2
Explanation:
Using law of energy conservation while taking into account of the rotational and translation kinetic energy, when the solid cylinder rolls down the incline we have the potential energy converted to kinetic energy:


where m is the mass,
is the moments of inertia of the solid cylinder
is the angular speed of the cylinder



So if you plot a liner chart of h vs
and get a slope of 6.42 then that means 3/(4g) = 6.42 so 
The gravitational acceleration on this planet is 8.56 m/s2
Answer:
Acceleration is defined as the ratio between the change in velocity of an object and the time it takes for the object to change the velocity.
In formula, this is written as:

where
vf is the final velocity
vi is the initial velocity
t is the time it takes for the object to accelerate from u to v
Note that acceleration is a vector, so it can also be caused by a change in the direction of the velocity, not only by a change in its magnitude.
An object is considered to be in a condition of equilibrium when it is balanced with regard to all external forces.
Equilibrium:
An object is considered to be in equilibrium if both its angular acceleration and the acceleration of its center of mass are equal to zero. In layman's terms: The item must either be at rest or moving at a constant speed if it is not accelerating because F = ma (force = mass x acceleration). Even in motion, a body can be in equilibrium. This kind of equilibrium is referred to as a dynamic equilibrium.
A weight suspended by a spring or a brick laying on a flat surface is an example. The equilibrium is unstable if the force with the smallest deviation tends to increase the displacement. As an example, imagine a ball bearing on the edge of a razor blade.
Learn more about equilibrium here:
brainly.com/question/13153118
#SPJ1
Answer:
Explanation:
The different types of radiation are defined by the the amount of energy found in the photons. Radio waves have photons with low energies, microwave photons have a little more energy than radio waves, infrared photons have still more, then visible, ultraviolet, X-rays, and, the most energetic of all, gamma-rays