Is there a equation or something so I can do the math of how many flowers there are at the end of the two monthsm

Strength: able to detect planets in a wide range of orbits, as long as orbits aren't face on
Limitations: yield only planet's mass and orbital properties
Answer:
r = 3.787 10¹¹ m
Explanation:
We can solve this exercise using Newton's second law, where force is the force of universal attraction and centripetal acceleration
F = ma
G m M / r² = m a
The centripetal acceleration is given by
a = v² / r
For the case of an orbit the speed circulates (velocity module is constant), let's use the relationship
v = d / t
The distance traveled Esla orbits, in a circle the distance is
d = 2 π r
Time in time to complete the orbit, called period
v = 2π r / T
Let's replace
G m M / r² = m a
G M / r² = (2π r / T)² / r
G M / r² = 4π² r / T²
G M T² = 4π² r3
r = ∛ (G M T² / 4π²)
Let's reduce the magnitudes to the SI system
T = 3.27 and (365 d / 1 y) (24 h / 1 day) (3600s / 1h)
T = 1.03 10⁸ s
Let's calculate
r = ∛[6.67 10⁻¹¹ 3.03 10³⁰ (1.03 10⁸) 2) / 4π²2]
r = ∛ (21.44 10³⁵ / 39.478)
r = ∛(0.0543087 10 36)
r = 0.3787 10¹² m
r = 3.787 10¹¹ m
Answer:
Explanation:
Both are contact forces arising at the interface between two bodies. In the fluid this interface might be irregular, and it completely surrounds a submerged object. For a solid it is usually a single flat surface - but it can be a collection of surfaces, which do not need to be flat or regular, and which can surround the object
Upthrust occurs at a fluid-solid interface whereas normal reaction occurs at a solid-solid surface. However, it is possible to generate the same fluid-like phenomenon of upthrust by immersing a solid object in sand or small beads and agitating them to simulate the pressure of atoms. With
Answer
a) Using dimensional analysis we cannot derive the relation, But we can check the correctness of the formula.

now, L H S
s = distance
dimension of distance = [M⁰L¹T⁰]
now, equation on the right hand side
R H S
u = speed
u = m/s
Dimension of speed = [M⁰L¹T⁻¹]
dimension of time
t = sec
Dimension of time = [M⁰L⁰T¹]
Dimension of 'ut' = [M⁰L¹T⁻¹][M⁰L⁰T¹]
= [M⁰L¹T⁰]
now, acceleration= a
a = m /s²
dimension of acceleration = [M⁰L¹T⁻²]
dimension of (at²) = [M⁰L¹T⁻²][M⁰L⁰T¹][M⁰L⁰T¹]
= [M⁰L¹T⁰]
hence, the dimension are balanced.
so, L H S = R H S
b) Moment of inertia of hollow sphere = 
Moment of inertia of solid sphere = 
we know,


Torque is the force that causes rotation
If the same amount of torque is applied to both spheres the sphere with bigger moment of inertia would have smaller angular velocity.
Thus the solid sphere would accelerate more.