Explanation:
When m=<em>mass</em>
G=<em>a</em><em>c</em><em>c</em><em>e</em><em>l</em><em>e</em><em>r</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>d</em><em>u</em><em>e</em><em> </em><em>t</em><em>o</em><em> </em><em>gravity</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>H</em><em>=</em><em>h</em><em>e</em><em>i</em><em>g</em><em>h</em><em>t</em>
<em>U</em><em>s</em><em>i</em><em>n</em><em>g</em><em> </em><em>f</em><em>o</em><em>r</em><em>m</em><em>u</em><em>l</em><em>a</em>
<em>M</em><em>g</em><em>h</em>
<em>(</em><em>M</em><em>=</em><em>6</em><em>, </em><em>g</em><em>=</em><em>10</em><em>,</em><em>h</em><em>=</em><em>?</em><em>) </em>
6×10×h
=60joules
For the first part of this question, consider that "weight" can be described as mass x acceleration of gravity. Weight is expressed in Newtons. To solve for mass in this case, simply divide 9800N by 9.8m/s^2 (Earth's gravitational acceleration). This will give you a mass of 1000 kg. This mass is moved due to the net force supplied by the normal force from the rocket "pushing" off of Earth.
For the second part, we will use the equation F = ma, which is Newton's second law. For this, we know the m, or mass, is 1000 kg. Also, we know the a, or acceleration, will be 4 m/s^2. To solve for force, we will multiply both of these values. This gives a force of 4000 N. I hope this clears things up!
Answer:
Here is the solution hope it helps:)
Answer:
The correct option is;
D. Fabrication
Explanation:
A workflow flow is a detailed business process consisting of a series of required interconnected tasks in directed graph format that is executable by workflow management system.
Considering each of the options, we have
A. Work center
This consists of part of the transformation input to output. The location
B. Project
This is the unique identifier of the task to be processed
C. Assembly line
Forms part of the required input where transformation takes place and items are being processed within the assembly line
D. Fabrication
Here the item is fixed, without motion, therefore this is not considered a major work flow structure
E. Continuous flow
Here again, the items are being processed and are in motion, which constitutes a workflow structure.