Answer: ![K_c=\frac{[CH_3Cl]\times [OH^-]}{[CH_3OH]\times [Cl^-]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3Cl%5D%5Ctimes%20%5BOH%5E-%5D%7D%7B%5BCH_3OH%5D%5Ctimes%20%5BCl%5E-%5D%7D)
Explanation:
Equilibrium constant is the ratio of the concentration of products to the concentration of reactants each term raised to its stochiometric coefficients. Pure solids are assumed to have a concentration of 1.
The given balanced equilibrium reaction is:

The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[CH_3Cl]\times [OH^-]}{[CH_3OH]\times [Cl^-]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3Cl%5D%5Ctimes%20%5BOH%5E-%5D%7D%7B%5BCH_3OH%5D%5Ctimes%20%5BCl%5E-%5D%7D)
Thus the equilibrium constant expression for this reaction is ![K_c=\frac{[CH_3Cl]\times [OH^-]}{[CH_3OH]\times [Cl^-]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3Cl%5D%5Ctimes%20%5BOH%5E-%5D%7D%7B%5BCH_3OH%5D%5Ctimes%20%5BCl%5E-%5D%7D)
Answer:
Explanation:
find solution in the attached below
Answer:
![[HI]_{eq}=0.942M](https://tex.z-dn.net/?f=%5BHI%5D_%7Beq%7D%3D0.942M)
Explanation:
Hello,
In this case, the initial concentrations of hydrogen and iodine are the same:
![[H_2]_0=[I_2]_0=0.600M](https://tex.z-dn.net/?f=%5BH_2%5D_0%3D%5BI_2%5D_0%3D0.600M)
Thus, considering the given undergoing chemical reaction, one states the law of mass action in terms of the change
due to the chemical change as shown below:

Therefore, solving for
by quadratic equation one obtains:

Nevertheless, the feasible result is the first one as the second one results in negative concentrations, thus, the hydroiodic acid equilibrium concentration turns out:
![[HI]_{eq}=2*0.471M=0.942M](https://tex.z-dn.net/?f=%5BHI%5D_%7Beq%7D%3D2%2A0.471M%3D0.942M)
Best regards.
Answer:
mercury or Hg
Explanation:
i looked at the periodic table haha
hope this helps and is right <3