Answer:
Explanation:
We shall first calculate the velocity at height h = 575 m .
acceleration a = 2.2 m /s²
v² = u² + 2 a s
u is initial velocity , v is final velocity , s is height achieved
v² = 0 + 2 x 2.2 x 575
v = 50.3 m /s
After 575 m , rocket moves under free fall so g will act on it downwards
If it travels further by height H
from the relation
v² = u² - 2 g H
v = 0 , u = 50.3 m /s
H = ?
0 = 50.3² - 2 x 9.8 H
H = 129.08 m
Total height attained by rocket
= 575 + 129.08
= 704.08 m .
Elastic
Explanation is that it is force which is snapping back
Answer:
Explanation:
The moment of inertia is the integral of the product of the squared distance by the mass differential. Is the mass equivalent in the rotational motion
a) True. When the moment of inertia is increased, more force is needed to reach acceleration, so it is more difficult to change the angular velocity that depends proportionally on the acceleration
b) True. The moment of inertia is part of the kinetic energy, which is composed of a linear and an angular part. Therefore, when applying the energy conservation theorem, the potential energy is transformed into kinetic energy, the rotational part increases with the moment of inertia, so there is less energy left for the linear part and consequently it falls slower
c) True. The moment of inertial proportional to the angular acceleration, when the acceleration decreases as well. Therefore, a smaller force can achieve the value of acceleration and the change in angular velocity. Consequently, less force is needed is easier
Answer:
The mass of the bat is 1.09 kg.
Explanation:
Given that,
The balance point of the glove, x = 74.9 cm
Mass of the glove, m = 0.56 kg
Center of mass of the baseball bat, C = 25.3 cm
Let M is the mass of the bat. The center of mass is given by the formula as :

X is 0 as it is at a end


M = 1.09 kg
So, the mass of the bat is 1.09 kg. Hence, this is the required solution.
Answer:
T²= 4π²R³/GM
Explanation:
First we know that
Fg= Fc
Because centripetal force must equal gravitational force
So
GMm/R² = Mv²/R
But velocity is 2πR/T
So by substitution we have
GMm/R²= M (2πR/T)/T
We have
T²= 4π²R³/GM as period