Answer:
I would say the last one because mass is not created nor destroyed.
Explanation:
Make sure have same amounts of species on both sides
Cu (s) + 2 AgNO3 (aq) -> Cu(NO3)2 (aq) + 2 Ag (s)
The metal component of the given compound, CrCl3, is chromium. The number of moles per 1 g of chromium is calculated through the equation below,
n = (1 g Cr)(1 mol Cr/51.996 g Cr)
n = 0.0192 mol Cr(3 electrons/1 mol Cr)
n = 0.0577 e-
Determine the number in charge by multiplying with Faraday's constant,
C = (0.0577 mol Cr)((1 F/1 mol e-)(96485 C/ 1F)
C = 5,566.87 C
Then, calculate time by dividing the charge with the current,
t = 5566.87 C/1.5 A
t = 3711.25 minutes
t = 61.84 hours
<span><em>Answer: 61.84 hours</em></span>
It depends on the substance,but for most substance it is in the gaseous state.
CaCO3 + 2KCL ⇒ CaCl2 + K2CO3
It is balanced as so based on the charges given on the periodic table and polyatomic ions.
Calcium has the charge of 2 but CO3 also shares the same charge, thus cancelling that out.
Potassium has a charge of 1 while Chlorine also shares a charge of 1, also cancelling it out.
Thus, if it performs a double replacement reaction, they would take these charges to the new elements that do not cancel out their charges.
Therefore, we need the coefficient of 2 in front of Potassium Chloride in order to balance the equation as on the products side of the equation, Potassium and Chlorine both have a subscript of 2.
Hope this helps!