Answer:
Parachute exerts a force of 619.2 N upward
The net force is 86.4 N acting downward
Explanation:
As the gravitational acceleration g = 9.8 m/s2, the parachute help reduces the net acceleration to 1.2m/s. So it must exerted an upward acceleration on the skydiver of
9.8 - 1.2 = 8.6 m/s2
Since the skydiver mass is 72 kg, we can use Newton's 2nd law to calculate the force that causes this acceleration of 8.6
F = ma = 8.6*72 = 619.2 N acting upward
The net force is also the product of net acceleration and mass
= 1.2 * 72 = 86.4 N acting downward
Answer:
x = 1474.9 [m]
Explanation:
To solve this problem we must use Newton's second law, which tells us that the sum of forces must be equal to the product of mass by acceleration.
We must understand that when forces are applied on the body, they tend to slow the body down to stop it.
So as the body continues to move to the left, it is slowing down. Therefore we must calculate this deceleration value using Newton's second law. We must perform a sum of forces on the x-axis equal to the product of mass by acceleration. With leftward movement as negative and rightward forces as positive.
ΣF = m*a
Now using the following equation of kinematics, we can calculate the distance of the block, before stopping completely. The initial speed must be 100 [m/s].
where:
Vf = final velocity = 0 (the block stops)
Vo = initial velocity = 100 [m/s]
a = - 3.39 [m/s²]
x = displacement [m]
Answer:
in first case the torque is maximum.
Explanation:
Torque is defined as the product of force and the perpendicular distance.
τ = F x d x Sinθ
In case A: the angle between force vector and the distance vector is 90 so torque is
τ = F x d
In case B: the angle between force vector and the distance is 30°.
τ = F x d x Sin30
τ = 0.5 Fd
So the torque is maximum in first case.
Answers:(a) μT
(b) μm
(c) f =
Explanation:Given electric field(in y direction) equation:
(a) The amplitude of electric field is
. Hence
The amplitude of magnetic field oscillations is
Where c = speed of light
Therefore,
μT (Where T is in seconds--signifies the oscillations)
(b) To find the wavelength use:
μm
(c) Since c = fλ
=> f = c/λ
Now plug-in the values
f = (3*10^8)/(0.4488*10^-6)
f =
Answer:
"A turbine takes the kinetic energy of a moving fluid, air in this case, and converts it to a rotary motion. As wind moves past the blades of a wind turbine, it moves or rotates the blades. These blades turn a generator."